首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminescent hydrogen-bonded organic framework (HOF) based films have become one of the most remarkable materials for optical application, thus, developing facile synthesis methods and establishing multifunctional applications for HOF-based luminescent materials are essential. Herein, a dual-emitting Eu3+-functionalized HOF hydrogel film ( 1 ) is fabricated successfully. 1 emits a blue-green long afterglow when turning off the UV lamp, and the long afterglow lifetime gets to 1.99 s. 1 performs great selectivity, high sensitivity, and low detection limit toward ofloxacin and flumequine, and the sensing toward ofloxacin and flumequine is in accord with the chroma and ratio modes. The fluorescent response mechanisms of 1  toward ofloxacin and flumequine are investigated in depth, which are further utilized to build an anticounterfeiting platform with high-level security. The film-based anticounterfeiting platform can conduct information encryption on demand inline with different fluorescent responses and can also fetch specific information by controlling the long afterglow intensity and excited light. This study not only provides a representative case of the fabrication of dual-emitting Eu3+-functionalized HOF-based hydrogel film but also opens the possibility of HOF-based film as intelligent luminescent materials with multifunctionalities.  相似文献   

2.
An effective approach to develop a novel macroscopic anisotropic bilayer hydrogel actuator with on–off switchable fluorescent color‐changing function is reported. Through combining a collapsed thermoresponsive graphene oxide‐poly(N‐isopropylacrylamide) (GO‐PNIPAM) hydrogel layer with a pH‐responsive perylene bisimide‐functionalized hyperbranched polyethylenimine (PBI‐HPEI) hydrogel layer via macroscopic supramolecular assembly, a bilayer hydrogel is obtained that can be tailored and reswells to form a 3D hydrogel actuator. The actuator can undergo complex shape deformation caused by the PNIPAM outside layer, then the PBI‐HPEI hydrogel inside layer can be unfolded to trigger the on–off switch of the pH‐responsive fluorescence under the green light irradiation. This work will inspire the design and fabrication of novel biomimetic smart materials with synergistic functions.  相似文献   

3.
Integrating origami principles within traditional microfabrication methods can produce shape morphing microscale metamaterials and 3D systems with complex geometries and programmable mechanical properties. However, available micro‐origami systems usually have slow folding speeds, provide few active degrees of freedom, rely on environmental stimuli for actuation, and allow for either elastic or plastic folding but not both. This work introduces an integrated fabrication–design–actuation methodology of an electrothermal micro‐origami system that addresses the above‐mentioned challenges. Controllable and localized Joule heating from electrothermal actuator arrays enables rapid, large‐angle, and reversible elastic folding, while overheating can achieve plastic folding to reprogram the static 3D geometry. Because the proposed micro‐origami do not rely on an environmental stimulus for actuation, they can function in different atmospheric environments and perform controllable multi‐degrees‐of‐freedom shape morphing, allowing them to achieve complex motions and advanced functions. Combining the elastic and plastic folding enables these micro‐origami to first fold plastically into a desired geometry and then fold elastically to perform a function or for enhanced shape morphing. The proposed origami systems are suitable for creating medical devices, metamaterials, and microrobots, where rapid folding and enhanced control are desired.  相似文献   

4.
Organic luminescent materials with time-dependent emission colors show promising applications in the fields of chemical sensing, high-resolution bioimaging, and high-security information encryption. Herein a time-dependent fluorescence system based on a spirocyclic scaffold-bridged cyanostilbene dimer ( SDCS ) as the single component in a mixed CH3CN/H2O solvent is presented. Specifically, the original orange-emitting nanoparticles prepared from SDCS by reprecipitation can transform into green-emitting nanosheets over time driven by supramolecular self-assembly. It is worth noting that such a transformation rate can be controlled by tuning the water fraction. Based on these unique properties, fluorescent binary codes are developed, enabling time-dependent information encryption with a higher level of security. Moreover, the dual color can be individually fixed by solid matrices such as hydrogel or powder. The obtained luminescent powders are successfully used in two-color fluorescence imaging of latent fingerprints. This work demonstrates the use of a supramolecular strategy to control multiple emissions in a single-component system for multifunctional applications.  相似文献   

5.
The ability to easily generate anisotropic hydrogel environments made from functional molecules with microscale resolution is an exciting possibility for the biomaterials community. This study reports a novel 3D electrophoresis‐assisted lithography (3DEAL) platform that combines elements from proteomics, biotechnology, and microfabrication to print well‐defined 3D molecular patterns within hydrogels. The potential of the 3DEAL platform is assessed by patterning immunoglobulin G, fibronectin, and elastin within nine widely used hydrogels and characterizing pattern depth, resolution, and aspect ratio. Furthermore, the technique's versatility is demonstrated by fabricating complex patterns including parallel and perpendicular columns, curved lines, gradients of molecular composition, and patterns of multiple proteins ranging from tens of micrometers to centimeters in size and depth. The functionality of the printed molecules is assessed by culturing NIH‐3T3 cells on a fibronectin‐patterned polyacrylamide‐collagen hydrogel and selectively supporting cell growth. 3DEAL is a simple, accessible, and versatile hydrogel‐patterning platform based on controlled molecular printing that may enable the development of tunable, chemically anisotropic, and hierarchical 3D environments.  相似文献   

6.
Molecular room‐temperature phosphorescent (RTP) materials with long‐lived excited states have attracted widespread attention in the fields of optical imaging, displays, and sensors. However, accessing ultralong RTP systems remains challenging and examples are still limited to date. Herein, a thermally activated delayed fluorescence (TADF)‐assisted energy transfer route for the enhancement of persistent luminescence with an RTP lifetime as high as 2 s, which is higher than that of most state‐of‐the‐art RTP materials, is proposed. The energy transfer donor and acceptor species are based on the TADF and RTP molecules, which can be self‐assembled into two‐component ionic salts via hydrogen‐bonding interactions. Both theoretical and experimental studies illustrate the occurrence of effective Förster resonance energy transfer (FRET) between donor and acceptor molecules with an energy transfer efficiency as high as 76%. Moreover, the potential for application of the donor–acceptor cocrystallized materials toward information security and personal identification systems is demonstrated, benefitting from their varied afterglow lifetimes and easy recognition in the darkness. Therefore, the work described in this study not only provides a TADF‐assisted FRET strategy toward the construction of ultralong RTP, but also yields hydrogen‐bonding‐assembled two‐component molecular crystals for potential encryption and anti‐counterfeiting applications.  相似文献   

7.
This work describes a class of complex combining three dithienylethene units and a lanthanide ion used as an optical system displaying a double encryption method: i) a colorful code, drawn and erased under UV and visible irradiations respectively, due to coloration and discoloration of the photochromic entities, and ii) a concomitant gradual disappearance and progressive restoration of the associated lanthanide ion luminescence triggered with the same stimuli. The innovation of the system stems from the emission color tunability, i.e., with either a lanthanide ion emitting only in the visible range (Eu3+) or with another lanthanide ion emitting only in the near infrared (NIR) range (Yb3+), therefore observable, or not, to the naked eye. This system is the very first one to achieve efficient repeatable modulation of pure NIR luminescence on photochemical command. Furthermore, it is proven to be highly efficient when embedded in a PDMS polymer opening real opportunities for practical applications as anti‐counterfeiting.  相似文献   

8.
New methods that yield covert fluorescent images are of significant interest for applications in anti‐counterfeit technology. Printing methods that offer access to spatially controlled fluorescence intensity are needed in order to accurately reproduce unique and complex images. Herein, the use of photoreactive inks containing 9,9′‐bis(anthracene)sulfoxide (AnSO) to create complex images with spatially controlled fluorescence intensity is presented. Under UV irradiation, the SO‐bridge between anthracene units in AnSO is extruded to yield the highly luminescent molecule 9,9′‐bianthryl (BA) in quantitative yields. The irreversible formation of BA is leveraged to create multidimensional fluorescent security features that can be patterned using light and easily interpreted using the CCD camera of a mobile phone.  相似文献   

9.
A polymer (mP) with thermogelling and metal coordinating properties is prepared by pyridine‐dicarboxylate (PDC) connected poly(ethylene glycol)‐poly(propylene glycol)‐poly(ethylene glycol) triblock copolymers. Tonsil‐derived mesenchymal stem cells (TMSCs) are incorporated in the mP hydrogel by increasing the temperature of the cell‐suspended aqueous mP solution to 37 °C. The TMSCs are randomly embedded in the in situ formed hydrogel at first; however, they aggregated to form live cell spheroids on day 7. In contrast, the spheroid formation is blocked in the Fe3+‐incorporating mP thermogel. Compared with the conventional 2D‐cultured stem cells, the stem cell spheroid in the 3D mP culture system exhibits significantly enhanced stemness biomarkers, angiogenic biomarkers, and anti‐inflammatory biomarkers in the growth medium. In addition, the stem cell spheroid exhibits significantly greater biomarker expression for osteogenic, chondrogenic, and adipogenic differentiations than the stem cells cultured in the 2D system in each induction medium. This study suggests that a simple injection of stem cells suspended in the current aqueous mP solution can lead to the spontaneous formation of stem cell spheroids with excellent multipotency and retention in the in situ formed thermogel, and thus opens a direct injectable method for the application of the stem cells at a target site.  相似文献   

10.
Here, a novel macroporous hydrogel dressing is presented that can accelerate wound healing and guard against bacteria‐associated wound infection. Carboxymethyl agarose (CMA) is successfully prepared from agarose. The CMA molecular chains are cross‐linked by hydrogen bonding to form a supramolecular hydrogel, and the hydroxy groups in the CMA molecules complex with Ag+ to promote hydrogel formation. This hydrogel composite exhibits pH‐responsiveness and temperature‐responsiveness and releases Ag+, an antibacterial agent, over a prolonged period of time. Moreover, this hydrogel exhibits outstanding cytocompatibility and hemocompatibility. In vitro and in vivo investigations demonstrate that the hydrogel has enhanced antibacterial and anti‐inflammatory capabilities and can significantly accelerate skin tissue regeneration and wound closure. Astonishingly, the hydrogel can cause the inflammation process to occur earlier and for a shorter amount of time than in a normal process. Given its excellent antibacterial, anti‐inflammatory, and physicochemical properties, the broad application of this hydrogel in bacteria‐associated wound management is anticipated.  相似文献   

11.
DNA origami can provide programmed information to guide the self‐assembly of gold nanospheres (Au NSs) into higher‐order supracolloids. Molecularly precise and truly 2D/3D integration of Au NSs is possible using DNA origami‐enabled assembly, and the resulting assemblies have potential applications in plasmonics and metamaterials. However, the relatively small size (<60 nm) and randomly faceted Au NSs that have been used thus far in DNA origami‐enabled assembly have limited their nanophotonic applications. Here, the robust self‐assembly of the 60–100 nm roundest Au NSs into metamolecular assemblies using 3D DNA origami is described. These Au NSs are successfully conjugated with DNA oligonucleotides and are therefore stable at high salt concentrations even without backfilling using organic ligands. The roundest Au NSs are successfully assembled into supracolloidal metamolecules and chains via 3D DNA origami. These plasmonic metamolecules and chains display strong electric and unnatural magnetic resonances that can be deterministically controlled.  相似文献   

12.
Fluorescent patterns showing the unique color change in response to external stimuli are of considerable interest for their applications in anti-counterfeiting. However, there is still a lack of intelligent fluorescent patterns with high-security levels, presenting a dynamic display of encrypted information. In this study, a fluorescent organohydrogel is fabricated through a two-step interpenetrating technique, leading to the co-existence of naphthalimide moieties (DEAN, green-yellow fluorescent monomer) contained Poly(N,N-dimethylacrylamide) (PDMA) hydrogel network and Polyoctadecyl methacrylate (PSMA) organogel network bearing spiropyran moieties (SPMA, photochromic monomer). Due to the unique heterogeneous networks, the fluorescence color goes through a continuous change from green to yellow to red via the fluorescence resonance energy transfer (FRET) process with the extension of irradiation time. In addition, when H+ is introduced into the system, SP units exhibit transformation into the protonated merocyanine (MCH+) rather than merocyanine (MC) under UV light, which inhibits the FRET process. By selectively being treated with H+, the fluorescent organohydrogel can act as an effective platform for encrypting secret information, making them more difficult to forge.  相似文献   

13.
舰船通信系统安全保密是实现整个舰船信息平台安全的关键和重点,文中参照舰船通信系统的主要功能结构,运用信息系统安全需求分析方法,从舰内通信系统、舰外通信系统和控制管理系统3个方面,分析了舰船通信系统存在的安全保密威胁,提出了舰船通信系统安全保密需求框架,并在网间系统安全隔离、内网安全防护、安全接入、信息加密与数字签名,以及综合安全管理5个方面进行了深入的需求分析。  相似文献   

14.
一种基于双重保护机制的电子政务安全平台   总被引:1,自引:1,他引:0  
张潇元  韩国强  邹昆  李闻 《通信技术》2008,41(2):63-65,69
随着网络应用的不断增多,重要的政务信息需要更加有效的保护措施,传统的单一加密方法不能满足这些需求,数字水印技术提出了一种隐藏策略来保护政务信息的可信性、防篡改性、完整性和不可否认性.文中将数字水印技术和传统加密技术结合起来,提供双重保护机制来增强政务信息的安全性,并设计了安全平台来解决分布式网络环境下重要信息的保护问题.文中详细讨论了模型信息的加密和认证过程,还讨论了平台的安全性.  相似文献   

15.
The development of fluorescent iron oxide nanomaterials is highly desired for multimodal molecular imaging. Instead of incorporating fluorescent dyes on the surface of iron oxides, a ligand‐assisted synthesis approach is developed to allow near‐infrared (NIR) fluorescence in Fe3O4 nanostructures. Using a trimesic acid (TMA)/citrate‐mediated synthesis, fabricated Fe3O4 nanostructures can generate a NIR two‐photon florescence (TPF) peak around 700 nm under the excitation by a 1230‐nm femtosecond laser. By tailoring the absorption of Fe3O4 nanostructures toward NIR band, the NIR‐TPF efficiency can be greatly increased. Through internal etching, surface peeling, and ligand replacement, spectroscopic results validated that such resonantly enhanced NIR‐TPF is mediated by surface states with strong NIR‐IR absorption. This TPF signal evolution can be generalized to other iron oxide nanomaterials like magnetite nanoparticles and α‐Fe2O3 nanoplates. Using the developed fluorescent Fe3O4 nanostructures, it is demonstrated that their TPF and third harmonic generation (THG) contrast in the nonlinear optical microscopy of live cells. It is anticipated that the synthesized NIR photofunctional Fe3O4 will serve as a versatile platform for dual‐modality magnetic resonance imaging (MRI) as well as a magnet‐guided theranostic agent.  相似文献   

16.
Developing physical double‐network (DN) removable hydrogel adhesives with both high healing efficiency and photothermal antibacterial activities to cope with multidrug‐resistant bacterial infection, wound closure, and wound healing remains an ongoing challenge. An injectable physical DN self‐healing hydrogel adhesive under physiological conditions is designed to treat multidrug‐resistant bacteria infection and full‐thickness skin incision/defect repair. The hydrogel adhesive consists of catechol–Fe3+ coordination cross‐linked poly(glycerol sebacate)‐co‐poly(ethylene glycol)‐g‐catechol and quadruple hydrogen bonding cross‐linked ureido‐pyrimidinone modified gelatin. It possesses excellent anti‐oxidation, NIR/pH responsiveness, and shape adaptation. Additionally, the hydrogel presents rapid self‐healing, good tissue adhesion, degradability, photothermal antibacterial activity, and NIR irradiation and/or acidic solution washing‐assisted removability. In vivo experiments prove that the hydrogels have good hemostasis of skin trauma and high killing ratio for methicillin‐resistant staphylococcus aureus (MRSA) and achieve better wound closure and healing of skin incision than medical glue and surgical suture. In particular, they can significantly promote full‐thickness skin defect wound healing by regulating inflammation, accelerating collagen deposition, promoting granulation tissue formation, and vascularization. These on‐demand dissolvable and antioxidant physical double‐network hydrogel adhesives are excellent multifunctional dressings for treating in vivo MRSA infection, wound closure, and wound healing.  相似文献   

17.
An iridescent chameleon‐like material that can change its colors under different circumstances is always desired in color‐on‐demand applications. Herein, a strategy based on trichromacy and the dynamically tunable fluorescence resonance energy transfer (FRET) process to design and prepare these chameleon‐like fluorescent materials is proposed. A set of trichromic (red, green, and blue), solid fluorescent materials are synthesized by covalently attaching spiropyran, fluorescein, and pyrene onto cellulose chains independently. After simply mixing them together, a full range of color is realized. The chameleon‐like nature of these materials is based on the dynamic tunable FRET process between donors (green and blue) and acceptors (red) in which the energy transfer efficiency can be finely tuned by irradiation. Ultimately, the reversible and nonlinear regulation of fluorescence properties, including color and intensity, is achieved on a timescale recognizable by the naked eye. Benefited by the excellent processability inherited from the cellulose derivatives, the as‐prepared materials are feasibly transformed into different forms. Particularly, a fluorescent ink with the complicated fluorescent input–output dependence suggests more than a proof‐of‐concept; indeed, it suggests a unique method of information encryption, security printing, and dynamic anticounterfeiting.  相似文献   

18.
Permanent magnets are essential components for many biomedical systems and electromechanical devices, which may be made into flexible formats to achieve wearable monitoring and effective integration with biological tissues. However, the development of high‐performance flexible permanent magnets is challenging due to their ultrathin geometries, which contradict with the thickness‐dependent magnetic properties. In addition, magnetic membranes with controllable sequences of polarities are difficult to achieve. Here, origami techniques to achieve flexible permanent magnetic membranes with enhanced magnetic field strength and programmable sequences of polarities are presented. Linear Halbach arrays, circular Halbach arrays, and concentric magnets with thicknesses ranging from 130 to 500 µm and bending curvatures ranging from 0.039 to 0.0043 µm?1 are achieved through different folding mechanisms. The origami membranes offer a maximum field intensity of 72 mT and extremely strong magnetic force of 0.21 N cm?2, allowing various novel applications demonstrated through electronics interfacing, cell manipulations, and soft robotics. The origami techniques offer large magnetism and complex spatial field distribution, and enable practical use of thin flexible magnetic membranes in constructing miniaturized or even flexible electromechanical systems and biomedical instruments for magnetic resonance imaging, targeted drug delivery, health monitoring, and cancer therapy.  相似文献   

19.
Despite significant advances in iron oxide nanoparticles, it is still a challenge to synthesize regular polyhedral single‐crystalline α‐Fe2O3 particles because the surface energies of several low‐index planes are fairly similar. In the work presented here, well‐dispersed and single‐crystalline dodecahedral and octodecahedral α‐Fe2O3 particles are synthesized by a facile hydrothermal method with the aid of F? anions. The crystalline structure of the polyhedral particles is disclosed by various characterization techniques. The dodecahedral particles are of hexagonal bipyramidal shape and enclosed by twelve equivalent (101) planes. The octodecahedral particles are formed by adding six equivalent (111) planes on the two tips of a dodecahedral particle, that is, they are enclosed by twelve (101) planes and six (111) planes. The existence of F? anions plays a crucial role in the control of polyhedral particle shape. The function of F? anions in the shape formation of the polyhedral particles is proposed as follows: 1) A high concentration of exposed Fe3+ cations induces preferential adsorption of F? anions on the (100) plane and leads to the slowest growth along the [100] direction. When the concentration of F? anions is higher than 24 mM , a stable speed ratio of growth along the [001] and [100] directions results in the exposure of (101) planes. 2) With a lower concentration of F? anions, six symmetrical (111) planes with low concentration of exposed Fe3+ cations are present at the tops of a dodecahedral particle to form an octodecahedron. Furthermore, the dodecahedral and octodecahedral α‐Fe2O3 particles show much stronger magnetism than the previously reported α‐Fe2O3 nanostructures, having coercivities of 4986 Oe and 6512 Oe, respectively. Such high coercivities are attributed to a large local magnetic anisotropy, which might be induced by the polyhedron with equivalent crystallographic planes and/or the presence of F? anions.  相似文献   

20.
Metal‐organic frameworks possess tremendous potential in biomedical areas for their particular structure. In this study, the authors explored Fe2+‐adsorbed nanoscaled zeolitic imidazolate framework‐8 (ZIF‐8) for in vivo multimodal imaging of cancerous cells for early diagnosis of target cancers. The observations demonstrate that adding Fe2+ into the suspension of ZIF‐8 can neutralize the alkalinity and lower toxicity, while the Fe2+‐adsorbed ZIF‐8 can readily transform to fluorescence ZnO and super paramagnetic Fe3O4 under the synergistic reaction of ROS, GSH, and acids. It is evident that the formation of the nanoclusters ZnO and Fe3O4 only occurred in cancerous cells and does not take place in normal cells, which can be attributed to the different ROS levels and specific micro‐environment in tumor and normal cells. This raises the possibility for the Fe2+‐adsorbed zeolitic imidazolate frameworks to act as promising agents for the in vivo multimodal imaging of cancers in their early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号