首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new strategy for enhancing the photoinduced mechanical force is demonstrated using a reprocessable azobenzene‐containing liquid crystalline network (LCN). The basic idea is to store mechanical strain energy in the polymer beforehand so that UV light can then be used to generate a mechanical force not only from the direct light to mechanical energy conversion upon the transcis photoisomerization of azobenzene mesogens but also from the light‐triggered release of the prestored strain energy. It is shown that the two mechanisms can add up to result in unprecedented photoindued mechanical force. Together with the malleability of the polymer stemming from the use of dynamic covalent bonds for chain crosslinking, large‐size polymer photoactuators in the form of wheels or spring‐like “motors” can be constructed, and, by adjusting the amount of prestored strain energy in the polymer, a variety of robust, light‐driven motions with tunable rolling or moving direction and speed can be achieved. The approach of prestoring a controllable amount of strain energy to obtain a strong and tunable photoinduced mechanical force in azobenzene LCN can be further explored for applications of light‐driven polymer actuators.  相似文献   

2.
Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open‐mesh shaped ultrathin deformable heaters, sensors of single‐crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon‐black‐doped liquid‐crystal elastomer (LCE‐CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE‐CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots.  相似文献   

3.
Movement is one of the vital features of living systems, and remote control of bioinspired soft robotic systems in a precise, contactless and harmless way is extremely desirable but challenging. A near-infrared (NIR) photodriven polymeric oscillator is designed and fabricated by selectively coating a mussel-inspired polydopamine (PDA) polymer layer on the surface of splay-aligned liquid crystalline network (LCN) film. The oscillating motions of the LCN oscillators can be facilely manipulated by tuning light intensity and film thickness. More importantly, the programmability of the PDA coating enables the oscillating behaviors of LCN film to be predesignated and finely adjusted by coating the film with PDA locally and repeatedly. The self-oscillating movement mechanism can be attributed to the temperature oscillation at the PDA-coated LCN film since it is alternatively exposed and sheltered to the NIR-light irradiations. Owing to over 50% NIR irradiation in solar spectrum, PDA-coated film is found to oscillate upon exposure of focused sunlight, presenting great potential in fabrication of solar power generation devices. This provides a versatile strategy to fabricate NIR-light-actuated polymeric oscillators, providing inspirations in the development of biological soft robots and advanced biomimetic devices.  相似文献   

4.
Considering that the human brain uses ≈1015 synapses to operate, the development of effective artificial synapses is essential to build brain‐inspired computing systems. In biological synapses, the voltage‐gated ion channels are very important for regulating the action‐potential firing. Here, an electrolyte‐gated transistor using WO3 with a unique tunnel structure, which can emulate the ionic modulation process of biological synapses, is proposed. The transistor successfully realizes synaptic functions of both short‐term and long‐term plasticity. Short‐term plasticity is mimicked with the help of electrolyte ion dynamics under low electrical bias, whereas the long‐term plasticity is realized using proton insertion in WO3 under high electrical bias. This is a new working approach to control the transition from short‐term memory to long‐term memory using different gate voltage amplitude for artificial synapses. Other essential synaptic behaviors, such as paired pulse facilitation, the depression and potentiation of synaptic weight, as well as spike‐timing‐dependent plasticity are also implemented in this artificial synapse. These results provide a new recipe for designing synaptic electrolyte‐gated transistors through the electrostatic and electrochemical effects.  相似文献   

5.
Converting solar energy into concentrated heat is very appealing for various applications. Polypyrrole (PPy) is known to possess excellent photothermal property with low thermal conductivity, and thus is an ideal candidate for solar–thermal energy conversion. However, solar–thermal materials based on PPy or other conducting polymers still exhibit limited energy conversion efficiency due to the lack of effective light‐trapping schemes. Here, it is demonstrated that multilayer PPy nanosheets with spontaneously formed surface structures such as wrinkles and ridges via sequential polymerization on paper substrates can dramatically enhance broadband and wide‐angle light absorption across the full solar spectrum, leading to an impressive solar–thermal conversion efficiency of 95.33%. The intriguing solar–thermal properties and structural features of multilayer PPy nanosheets can be used for solar heating and photoactuators. Meanwhile, when used for solar steam generation, the measured efficiency could achieve ≈92% under one sun irradiation. The hierarchically multilayer structure is mechanically flexible and robust, holding great potential for practical solar energy utilization. This study provides a simple and straightforward approach toward engineering light‐weight and thermally insulating polymers into efficient solar–thermal materials for emerging solar energy‐related applications.  相似文献   

6.
Hardware implementation of artificial synaptic devices that emulate the functions of biological synapses is inspired by the biological neuromorphic system and has drawn considerable interest. Here, a three‐terminal ferrite synaptic device based on a topotactic phase transition between crystalline phases is presented. The electrolyte‐gating‐controlled topotactic phase transformation between brownmillerite SrFeO2.5 and perovskite SrFeO3?δ is confirmed from the examination of the crystal and electronic structure. A synaptic transistor with electrolyte‐gated ferrite films by harnessing gate‐controllable multilevel conduction states, which originate from many distinct oxygen‐deficient perovskite structures of SrFeOx induced by topotactic phase transformation, is successfully constructed. This three‐terminal artificial synapse can mimic important synaptic functions, such as synaptic plasticity and spike‐timing‐dependent plasticity. Simulations of a neural network consisting of ferrite synaptic transistors indicate that the system offers high classification accuracy. These results provide insight into the potential application of advanced topotactic phase transformation materials for designing artificial synapses with high performance.  相似文献   

7.
Living organisms ubiquitously display colors that adapt to environmental changes, relying on the soft layer of cells or proteins. Adoption of soft materials into an artificial adaptive color system has promoted the development of material systems for environmental and health monitoring, anti‐counterfeiting, and stealth technologies. Here, a hydrogel interferometer based on a single hydrogel thin film covalently bonded to a reflective substrate is reported as a simple and universal adaptive color platform. Similar to the cell or protein soft layer of color‐changing animals, the soft hydrogel layer rapidly changes its thickness in response to external stimuli, resulting in instant color change. Such interference colors provide a visual and quantifiable means of revealing rich environmental metrics. Computational model is established and captures the key features of hydrogel stimuli‐responsive swelling, which elucidates the mechanism and design principle for the broad‐based platform. The single material–based platform has advantages of remarkable color uniformity, fast response, high robustness, and facile fabrication. Its versatility is demonstrated by diverse applications: a volatile‐vapor sensor with highly accurate quantitative detection, a colorimetric sensor array for multianalyte recognition, breath‐controlled information encryption, and a colorimetric humidity indicator. Portable and easy‐to‐use sensing systems are demonstrated with smartphone‐based colorimetric analysis.  相似文献   

8.
Single‐molecular electronics is a potential solution to nanoscale electronic devices. While simple functional single‐molecule devices such as diodes, switches, and wires are well studied, complex single‐molecular systems with multiple functional units are rarely investigated. Here, a single‐molecule AND logic gate is constructed from a proton‐switchable edge‐on gated pyridinoparacyclophane unit with a light‐switchable diarylethene unit. The AND gate can be controlled orthogonally by light and protonation and produce desired electrical output at room temperature. The AND gate shows high conductivity when treated with UV light and in the neutral state, and low conductivity when treated either with visible light or acid. A conductance difference of 7.3 is observed for the switching from the highest conducting state to second‐highest conducting state and a conductance ratio of 94 is observed between the most and least conducting states. The orthogonality of the two stimuli is further demonstrated by UV–vis, NMR, and density function theory calculations. This is a demonstration of concept of constructing a complex single‐molecule electronic device from two coupled functional units.  相似文献   

9.
Highly efficient human skin systems transmit fast adaptive (FA) and slow adaptive (SA) pulses selectively or consolidatively to the brain for a variety of external stimuli. The integrated analysis of these signals determines how humans perceive external physical stimuli. Here, a self‐powered mechanoreceptor sensor based on an artificial ion‐channel system combined with a piezoelectric film is presented, which can simultaneously implement FA and SA pulses like human skin. This device detects stimuli with high sensitivity and broad frequency band without external power. For the feasibility study, various stimuli are measured or detected. Vital signs such as the heart rate and ballistocardiogram can be measured simultaneously in real time. Also, a variety of stimuli such as the mechanical stress, surface roughness, and contact by a moving object can be distinguished and detected. This opens new scientific fields to realize the somatic cutaneous sensor of the real skin. Moreover, this new sensing scheme inspired by natural sensing structures is able to mimic the five senses of living creatures.  相似文献   

10.
Photoactivated reversible addition fragmentation chain transfer (RAFT)‐based dynamic covalent chemistry is incorporated into liquid crystalline networks (LCNs) to facilitate spatiotemporal control of alignment, domain structure, and birefringence. The RAFT‐based bond exchange process, which leads to stress relaxation, is used in a variety of conditions, to enable the LCN to achieve a near‐equilibrium structure and orientation upon irradiation. Once formed, and in the absence of subsequent triggering of the RAFT process, the (dis)order in the LCN and its associated birefringence are evidenced at all temperatures. Using this approach, the birefringence, including the formation of spatially patterned birefringent elements and surface‐active topographical features, is selectively tuned by adjusting the light dose, temperature, and cross‐linking density.  相似文献   

11.
Zigzag pattern formation is a common and important phenomenon in nature serving a multitude of purposes. For example, the zigzag‐shaped edge of green leaves boosts the transportation and absorption of nutrients. However, the elucidation of this complicated shape formation is challenging in fluid mechanics and soft condensed matter systems. Herein, a dynamically reconfigurable zigzag pattern deformation of a soft helical superstructure is demonstrated in a photoresponsive self‐organized cholesteric liquid crystal superstructure under the simultaneous influence of an applied electric field and light irradiation. The zigzag‐shaped pattern can not only be generated and terminated repeatedly on demand, but can also be easily manipulated by alternating irradiation of ultraviolet and visible light while under the influence of a sustained electric field. This unique behavior results from a delicate balance among the variable experimental parameters. The evolution of the zigzag‐shaped pattern is successfully modeled by numerical simulations and has been monitored through diffraction of a probe laser. Interestingly, this fascinating zigzag‐shaped pattern yields crescent‐shaped diffraction pattern. The reversibly controllable dynamic zigzag pattern could enable the fabrication of novel photonic devices and architectures, besides greatly advancing the fundamental understanding of temporal behavior of ordered soft materials under combined stimuli.  相似文献   

12.
Photosensitive materials contain biologically engineered elements and are constructed using delicate techniques, with special attention devoted to efficiency, stability, and biocompatibility. However, to date, no photosensitive material has been developed to replace damaged visual‐systems to detect light and transmit the signal to a neuron in the human body. In the current study, artificial nanovesicle‐based photosensitive materials are observed to possess the characteristics of photoreceptors similar to the human eye. The materials exhibit considerably effective spectral characteristics according to each pigment. Four photoreceptors originating from the human eye with color‐distinguishability are produced in human embryonic kidney (HEK)‐293 cells and partially purified in the form of nanovesicles. Under various wavelengths of visible light, electrochemical measurements are performed to analyze the physiological behavior and kinetics of the photoreceptors, with graphene, performing as an electrode, playing an important role in the lipid bilayer deposition and oxygen reduction processes. Four nanovesicles with different photoreceptors, namely, rhodopsin (Rho), short‐, medium‐, and longwave sensitive opsin 1 (1SW, 1MW, 1LW), show remarkable color‐dependent characteristics, consistent with those of natural human retina. With four different light‐emitting diodes for functional verification, the photoreceptors embedded in nanovesicles show remarkably specific color sensitivity. This study demonstrates the potential applications of light‐activated platforms in biological optoelectronic industries.  相似文献   

13.
Ultrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices. The ICS displays highly sensitive and stable sensing of representative VOCs (including toluene, hexane, propanal, ethanol, and acetone) that are found in the exhaled breath of lung cancer patients. In particular, the sensor is found to be fully operational even after being subjected to long‐term storage or harsh environmental conditions (relative humidity of 85% or temperature of 100 °C) or severe mechanical deformation (bending to a radius of curvature of 1 mm, or stretching strain of 100%), which can be an effective method to realize a human‐adaptive and skin‐attachable biosensor platform for daily use and early diagnosis.  相似文献   

14.
Accurate simulations of large deformation hyperelastic materials by the FEM is still a challenging problem. In a total Lagrangian formulation, even when using a very fine initial mesh, the simulation can break down due to severe mesh distortion. Error estimation and adaptive remeshing on the initial geometry are helpful and can provide more accurate solutions but are not sufficient to attain very large deformations. The updated Lagrangian formulation where the geometry is periodically updated is then preferred. However, it requires data transfer from the old mesh to the new one and this is a very delicate issue. In this paper, we present an updated Lagrangian formulation where the error is estimated and adaptive remeshing is performed in order to reach high level of deformations while controlling both the accuracy of the solution and mesh distortion. Special attention is given to data transfer methods and a very accurate cubic Lagrange projection method is introduced. A continuation method is used to automatically pilot the complete algorithm including load increase, error estimation, adaptive remeshing, and data transfer. A number of examples will be presented and analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Emulating the biological visual perception system typically requires a complex architecture including the integration of an artificial retina and optic nerves with various synaptic behaviors. However, self‐adaptive synaptic behaviors, which are frequently translated into visual nerves to adjust environmental light intensities, have been one of the serious challenges for the artificial visual perception system. Here, an artificial optoelectronic neuromorphic device array to emulate the light‐adaptable synaptic functions (photopic and scotopic adaptation) of the biological visual perception system is presented. By employing an artificial visual perception circuit including a metal chalcogenide photoreceptor transistor and a metal oxide synaptic transistor, the optoelectronic neuromorphic device successfully demonstrates diverse visual synaptic functions such as phototriggered short‐term plasticity, long‐term potentiation, and neural facilitation. More importantly, the environment‐adaptable perception behaviors at various levels of the light illumination are well reproduced by adjusting load transistor in the circuit, exhibiting the acts of variable dynamic ranges of biological system. This development paves a new way to fabricate an environmental‐adaptable artificial visual perception system with profound implications for the field of future neuromorphic electronics.  相似文献   

16.
Camera imaging systems are used widely. However, the resulting images may show unequal light distributions due to backlight. In this paper, an adaptive backlight compensation algorithm is presented for fixing the brightness and contrast in regions of interest, particularly for human faces. The framework is implemented in two stages. The first stage is the light compensation algorithm, which depends on face detection and focuses on the intensities of pixels in ‘face’ regions only. The second stage uses a distance weighting approach to address artificial light effects created by the first stage. This algorithm can adjust the imaging light distribution adaptively in order to solve the problem of backlight and achieve natural-looking pictures. For face recognition systems, this approach can improve the success rate for face recognition by 35% on average when images are backlit.  相似文献   

17.
Lead halide perovskites have shown much promise for high‐performing solar cells due to their inherent electronic nature, and though the color of bright‐light emitters based on perovskite nanoparticles can be tuned by halide mixing and/or size control, dynamic switching using external stimuli remains a challenge. This article reports an unprecedented lower critical solution temperature (LCST) for toluene solutions containing methylammonium lead bromide (MAPbBr3), oleic acid, alkylamines, and dimethylformamide. The delicate interplay of these molecules and ions allows for the reversible formation and decomposition of MAPbBr3 nanoparticles upon heating and cooling, which is accompanied by green and blue photoemissions at each state. An intermediate 1D crystal with PbBr2‐amine coordination is found to play pivotal role in this, and a mechanistic insight is provided based on a three‐state model. In addition to a high quantum yield (up to 85%), this system allows for control over the cloud point (30?80 °C) through compositional engineering and the luminescent color (blue to red) via halogen exchange, thus making it a versatile solution for developing functional molecular organic–inorganic LCST quantum dots.  相似文献   

18.
The swimming locomotion of fish involves a complex interplay between a deformable body and induced flow in the surrounding fluid. While innovative robotic devices, inspired by physicomechanical designs evolved in fish, have been created for underwater propulsion of large swimmers, scaling such powerful locomotion into micro‐/nanoscale propulsion remains challenging. Here, a magnetically propelled fish‐like artificial nanoswimmer is demonstrated that emulates the body and caudal fin propulsion swimming mechanism displayed by fish. To mimic the deformable fish body for periodic shape changes, template‐electrosynthesized multisegment nanowire swimmers are used to construct the artificial nanofishes (diameter 200 nm; length 4.8 μm). The resulting nanofish consists a gold segment as the head, two nickel segments as the body, and one gold segment as the caudal fin, with three flexible porous silver hinges linking each segment. Under an oscillating magnetic field, the propulsive nickel elements bend the body and caudal fin periodically to generate travelling‐wave motions with speeds exceeding 30 μm s?1. The propulsion dynamics is studied theoretically using the immersed boundary method. Such body‐deformable nanofishes exhibit a high swimming efficiency and can serve as promising biomimetic nanorobotic devices for nanoscale biomedical applications.  相似文献   

19.
纸浆模塑材料在不同加载条件下的力学特性   总被引:9,自引:9,他引:0  
实验测量了纸浆模塑材料在不同加载条件下拉伸时的强度极限、弹性模量和泊松比等力学性能,同时给出了纸浆模塑材料的应力-应变曲线,为纸浆模塑缓冲包装结构的有限元分析和设计提供了基础数据.实验结果表明:当加载速率提高时,试件强度极限和弹性模量随之增加;当温度升高时,纸浆模塑材料的强度极限和弹性模量随之逐渐升高;当湿度升高时,纸浆模塑的强度极限和弹性模量随之降低.纸浆模塑材料单向拉伸时横向变形很小,且对温、湿度等环境因素影响敏感,泊松比的测量比较困难.数字图像相关测量方法具有灵敏度高、非接触、直接测量物体表面全场变形的特点,采用该测量方法解决了材料泊松比的测量问题.实验测得纸浆模塑材料泊松比为0.097.  相似文献   

20.
The iris, found in many animal species, is a biological tissue that can change the aperture (pupil) size to regulate light transmission into the eye in response to varying illumination conditions. The self‐regulation of the eye lies behind its autofocusing ability and large dynamic range, rendering it the ultimate “imaging device” and a continuous source of inspiration in science. In optical imaging devices, adjustable apertures play a vital role as they control the light exposure, the depth of field, and optical aberrations of the systems. Tunable irises demonstrated to date require external control through mechanical actuation, and are not capable of autonomous action in response to changing light intensity without control circuitry. A self‐regulating artificial iris would offer new opportunities for device automation and stabilization. Here, this paper reports the first iris‐like, liquid crystal elastomer device that can perform automatic shape‐adjustment by reacting to the incident light power density. Similar to natural iris, the device closes under increasing light intensity, and upon reaching the minimum pupil size, reduces the light transmission by a factor of seven. The light‐responsive materials design, together with photoalignment‐based control over the molecular orientation, provides a new approach to automatic, self‐regulating optical systems based on soft smart materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号