首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the different biological properties of articular cartilage and subchondral bone, it remains significant challenge to construct a bi‐lineage constructive scaffold. In this study, manganese (Mn)‐doped β‐TCP (Mn‐TCP) scaffolds with varied Mn contents are prepared by a 3D‐printing technology. The effects of Mn on the physicochemical properties, bioactivity, and corresponding mechanism for stimulating osteochondral regeneration are systematically investigated. The incorporation of Mn into β‐TCP lowers the lattices parameters and crystallization temperatures, but improves the scaffold density and compressive strength. The ionic products from Mn‐TCP significantly improve the proliferation of both rabbit chondrocytes and mesenchymal stem cells (rBMSCs), as well as promote the differentiation of chondrocytes and rBMSCs. The in vivo study shows that Mn‐TCP scaffolds distinctly improve the regeneration of subchondral bone and cartilage tissues as compared to TCP scaffolds, upon transplantation in rabbit osteochondral defects for 8 and 12 weeks. The mechanism is closely related to the Mn2+ ions significantly stimulated the proliferation and differentiation of chondrocytes through activating HIF pathway and protected chondrocytes from the inflammatory osteoarthritis environment by activating autophagy. These findings suggest that 3D‐printing of Mn‐containing scaffolds with improved physicochemical properties and bilineage bioactivities represents an intelligent strategy for regenerating osteochondral defects.  相似文献   

2.
Clinically, cartilage damage is frequently accompanied with subchondral bone injuries caused by disease or trauma. However, the construction of biomimetic scaffolds to support both cartilage and subchondral bone regeneration remains a great challenge. Herein, a novel strategy is adopted to realize the simultaneous repair of osteochondral defects by employing a self‐assembling peptide hydrogel (SAPH) FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) to coat onto 3D‐printed polycaprolactone (PCL) scaffolds. Results show that the SAPH‐coated PCL scaffolds exhibit highly improved hydrophilicity and biomimetic extracellular matrix (ECM) structures compared to PCL scaffolds. In vitro experiments demonstrate that the SAPH‐coated PCL scaffolds promote the proliferation and osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) and maintain the chondrocyte phenotypes. Furthermore, 3% SAPH‐coated PCL scaffolds significantly induce simultaneous regeneration of cartilage and subchondral bone after 8‐ and 12‐week implantation in vivo, respectively. Mechanistically, by virtue of the enhanced deposition of ECM in SAPH‐coated PCL scaffolds, SAPH with increased stiffness facilitates and remodels the microenvironment around osteochondral defects, which may favor simultaneous dual tissue regeneration. These findings indicate that the 3% SAPH provides efficient and reliable modification on PCL scaffolds and SAPH‐coated PCL scaffolds appear to be a promising biomaterial for osteochondral defect repair.  相似文献   

3.
Because cartilage and bone tissues have different lineage‐specific biological properties, it is challenging to fabricate a single type of scaffold that can biologically fulfill the requirements for regeneration of these two lineages simultaneously within osteochondral defects. To overcome this challenge, a lithium‐containing mesoporous bioglass (Li‐MBG) scaffold is developed. The efficacy and mechanism of Li‐MBG for regeneration of osteochondral defects are systematically investigated. Histological and micro‐CT results show that Li‐MBG scaffolds significantly enhance the regeneration of subchondral bone and hyaline cartilage‐like tissues as compared to pure MBG scaffolds, upon implantation in rabbit osteochondral defects for 8 and 16 weeks. Further investigation demonstrates that the released Li+ ions from the Li‐MBG scaffolds may play a key role in stimulating the regeneration of osteochondral defects. The corresponding mechanistic pathways involve Li+ ions enhancing the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) through activation of the Wnt signalling pathway, as well as Li+ ions protecting chondrocytes and cartilage tissues from the inflammatory osteoarthritis (OA) environment through activation of autophagy. These findings suggest that the incorporation of Li+ ions into bioactive MBG scaffolds is a viable strategy for fabricating bi‐lineage conducive scaffolds that enhance regeneration of osteochondral defects.  相似文献   

4.
Bioinspired scaffolds with two distinct regions resembling stratified anatomical architecture provide potential strategies for osteochondral defect repair and are studied in preclinical animals. However, delamination of the two layers often causes tissue disjunction between the regenerated cartilage and subchondral bone, leading to few commercially available clinical applications. This study develops an integrated poly(ε-caprolactone) (PCL)-based scaffold for repairing osteochondral defects. An extracellular matrix (ECM)-incorporated 3D printing composite scaffold (ECM/PCL) coated with ECM hydrogel (E-co-E/PCL) is fabricated as the upper layer, and magnesium oxide nanoparticles coated with polydopamine (MgO@PDA)-incorporated composite scaffold (MD/PCL) is fabricated using 3D printing as the bottom layer. The physicochemical and mechanical properties of the bilayer scaffold meet the requirements in designing and fabricating the osteochondral scaffold, especially a strong interface possessed between the two layers. By in vitro study, the integrated scaffold stimulates proliferation, chondrogenic differentiation, and osteogenic differentiation of human bone mesenchymal stem cells. Moreover, the integrated bilayer scaffold exhibits well repair ability to facilitate simultaneous regeneration of cartilage and subchondral bone after implanting into the osteochondral defect in rats. In addition, cartilage “tidemarks” completely regenerated after 12 weeks of implantation of the bilayer scaffold, which indicates no tissue disjunctions formed between the regenerated cartilage and subchondral bone.  相似文献   

5.
The emerging 3D printing technique allows for tailoring hydrogel‐based soft structure tissue scaffolds for individualized therapy of osteochondral defects. However, the weak mechanical strength and uncontrollable swelling intrinsic to conventional hydrogels restrain their use as bioinks. Here, a high‐strength thermoresponsive supramolecular copolymer hydrogel is synthesized by one‐step copolymerization of dual hydrogen bonding monomers, N‐acryloyl glycinamide, and N‐[tris(hydroxymethyl)methyl] acrylamide. The obtained copolymer hydrogels demonstrate excellent mechanical properties—robust tensile strength (up to 0.41 MPa), large stretchability (up to 860%), and high compressive strength (up to 8.4 MPa). The rapid thermoreversible gel ? sol transition behavior makes this copolymer hydrogel suitable for direct 3D printing. Successful preparation of 3D‐printed biohybrid gradient hydrogel scaffolds is demonstrated with controllable 3D architecture, owing to shear thinning property which allows continuous extrusion through a needle and also immediate gelation of fluid upon deposition on the cooled substrate. Furthermore, this biohybrid gradient hydrogel scaffold printed with transforming growth factor beta 1 and β‐tricalciumphosphate on distinct layers facilitates the attachment, spreading, and chondrogenic and osteogenic differentiation of human bone marrow stem cells (hBMSCs) in vitro. The in vivo experiments reveal that the 3D‐printed biohybrid gradient hydrogel scaffolds significantly accelerate simultaneous regeneration of cartilage and subchondral bone in a rat model.  相似文献   

6.
Successful regeneration of weight‐bearing bone defects and critical‐sized cartilage defects remains a major challenge in clinical orthopedics. In the past decades, biodegradable polymer materials with biomimetic chemical and physical properties have been rapidly developed as ideal candidates for bone and cartilage tissue engineering scaffolds. Due to their unique advantages over other materials of high specific‐surface areas, suitable mechanical strength, and tailorable characteristics, scaffolds made of polymer fibers have been increasingly used for the repair of bone and cartilage defects. This Review summarizes the preparation and compositions of polymer fibers, as well as their characteristics. More importantly, the applications of polymer fiber scaffolds with well‐designed structures or unique properties in bone, cartilage, and osteochondral tissue engineering have been comprehensively highlighted. On the whole, such a comprehensive summary affords constructive suggestions for the development of polymer fiber scaffolds in bone and cartilage tissue engineering.  相似文献   

7.
Current osteochondral (OC) defect repair approaches using premade scaffolds face clinical limitations due to invasiveness, weak integrity, and/or insufficient interfacial bonding. An injectable hydrophobic laminous adhesive is developed that rapidly photocross-link subaqueously and forms robust bi-layered structure that orchestrates biophysical-chemical cues for stimulating OC repair. Liquid hydrophobic photo-cross-linkable poly (lactide-co-propylene glycol-co-lactide) dimethacrylates (PmLnDMA) are adopted as cartilage phase and PmLnDMA encapsulating methacrylated hydroxyapatite nanoparticles (PmLnDMA/MH) as the mineralized subchondral bone phase. Both phases exhibit strong interfacial bonding due to the presence of “CC”. Mechanotransduction and growth factor-mediated signaling pathways are enchanced by matching the mechanical properties of two phases to native cartilage and bone via systematical modulation of the adhesives’ composition and encapsulated growth factors’ release profile. This enhances mesenchymal stem cells’ commitment to corresponding chondrocytes and osteoblasts to augment OC repair in vitro and in vivo, and ultimately benefits patients suffering from OC fracture, osteoarthritis, and osteoporosis.  相似文献   

8.
Malignant bone tumor is one of the major bone diseases. The treatment of such a bone disease typically requires the removal of bone tumor and regeneration of tumor‐initiated bone defects simultaneously. To address this issue, it is required that implanted biomaterials should combine the bifunctions of both therapy and regeneration. In this work, a bifunctional graphene oxide (GO)‐modified β‐tricalcium phosphate (GO‐TCP) composite scaffold combining a high photothermal effect with significantly improved bone‐forming ability is prepared by 3D‐printing and surface‐modification strategies. The prepared GO‐TCP scaffolds exhibit excellent photothermal effects under the irradiation of 808 nm near infrared laser (NIR) even at an ultralow power density of 0.36 W cm?2, while no photothermal effects are observed for pure β‐TCP scaffolds. The photothermal temperature of GO‐TCP scaffolds can be effectively modulated in the range of 40–90 °C by controlling the used GO concentrations, surface‐modification times, and power densities of NIR. The distinct photothermal effect of GO‐TCP scaffolds induces more than 90% of cell death for osteosarcoma cells (MG‐63) in vitro, and further effectively inhibits tumor growth in mice. Meanwhile, the prepared GO‐TCP scaffolds possess the improved capability to stimulate the osteogenic differentiation of rabbit bone mesenchymal stem cells (rBMSCs) by upregulating bone‐related gene expression, and significantly promote new bone formation in the bone defects of rabbits as compared to pure β‐TCP scaffolds. These results successfully demonstrate that the prepared GO‐TCP scaffolds have bifunctional properties of photothermal therapy and bone regeneration, which is believed to pave the way to design and fabricate novel implanting biomaterials in combination of therapy and regeneration functions.  相似文献   

9.
Osteochondral regeneration remains a great challenge due to the limited self-healing ability and the complexity of its hierarchical structure and composition. Mg2+ and hypoxia are two effective modulators in boosting chondrogenesis. To this end, a double-layered scaffold (D) consisting of a hydrogel layer on a porous cryogel is fabricated to mimic the hierarchical structure of osteochondral tissue. An Mg2+ gradient is incorporated into the double-layered scaffold with hypoxia-mimicking deferoxamine (DFO) embedded in the hydrogel (D-Mg-DFO), which remarkably augments the dual-lineage regeneration of both cartilage and subchondral bone. The higher Mg2+ supplementation from the upper hydrogel, associated with its hypoxia-mimicking situation and small pore size, exhibits promotive effects on chondrogenic differentiation. The lower Mg2+ supplementation from the bottom cryogel, associated with its interconnected macroporous structure, achieves multiple contributions in stem cell migration from bone marrow cavity, matrix mineralization, and osteogenesis. Furthermore, rabbits’ trochlea osteochondral defects are established to evaluate the regenerative outcome. Compared to control scaffolds containing only Mg2+ or DFO, the D-Mg-DFO scaffold presents the best regenerative effect under the synergistic contribution of multiple factors. Overall, this work provides a new design of scaffold toward an effective repair of cartilage defect.  相似文献   

10.
Tissue-engineered scaffolds have been extensively explored for treating bone defects; however, slow and insufficient vascularization throughout the scaffolds remains a key challenge for further application. Herein, a versatile microfluidic 3D printing strategy to fabricate black phosphorus (BP) incorporated fibrous scaffolds with photothermal responsive channels for improving vascularization and bone regeneration is proposed. The thermal channeled scaffolds display reversible shrinkage and swelling behavior controlled by near-infrared irradiation, which facilitates the penetration of suspended cells into the scaffold channels and promotes the prevascularization. Furthermore, the embedded BP nanosheets exhibit intrinsic properties for in situ biomineralization and improve in vitro cell proliferation and osteogenic differentiation. Following transplantation in vivo, these channels also promote host vessel infiltration deep into the scaffolds and effectively accelerate the healing process of bone defects. Thus, it is believed that these near-infrared responsive channeled scaffolds are promising candidates for tissue/vascular ingrowth in diverse tissue engineering applications.  相似文献   

11.
Malignant bone tumors are one of the major serious diseases in clinic. Inferior reconstruction of new bone and rapid propagation of residual tumor cells are the main challenges to surgical intervention. Herein, a bifunctional DTC@BG scaffold for near‐infrared (NIR)‐activated photonic thermal ablation of osteosarcoma and accelerated bone defect regeneration is engineered by in situ growth of NIR‐absorbing cocrystal (DTC) on the surface of a 3D‐printing bioactive glass (BG) scaffold. The prominent photothermal conversion performance and outstanding bone regeneration capability of DTC@BG scaffolds originate from the precise tailoring of the bandgap between the electron donors and acceptors of DTC and promote new bone growth performance of BG scaffolds. DTC@BG scaffolds not only significantly promote tumor cell ablation in vitro, but also effectively facilitate bone tumor suppression in vivo. In particular, DTC@BG scaffolds exhibit excellent capability in stimulating osteogenic differentiation and angiogenesis, and finally promote newborn bone formation in the bone defects. This research represents the first paradigm for ablating osteosarcoma and facilitating new bone formation through precise modulation of electron donors and acceptors in the cocrystal, which offers a new avenue to construct high‐efficiency therapeutic platforms based on cocrystal strategy for ablation of malignant bone tumor.  相似文献   

12.
Rapid and efficient disease‐induced or critical‐size bone regeneration remains a challenge in tissue engineering due to the lack of highly bioactive biomaterial scaffolds. Physical structures such as nanostructures, chemical components such as silicon elements, and biological factors such as genes have shown positive effects on bone regeneration. Herein, a bioactive photoluminescent elastomeric silicate‐based nanofibrous scaffold with sustained miRNA release is reported for promoting bone regeneration based on a joint physico‐chemical‐biological strategy. Bioactive nanofibrous scaffolds are fabricated by cospinning poly (ε‐caprolactone) (PCL), elastomeric poly (citrates‐siloxane) (PCS), and bioactive osteogenic miRNA nanocomplexes (denoted PPM nanofibrous scaffolds). The PPM scaffolds possess uniform nanostructures, significantly enhanced tensile stress (≈15 MPa) and modulus (≈32 MPa), improved hydrophilicity (30–60°), controlled biodegradation, and strong blue fluorescence. Bioactive miRNA complexes are efficiently loaded into the nanofibrous matrix and exhibit long‐term release for up to 70 h. The PPM scaffolds significantly promote the adhesion, proliferation, and osteoblast differentiation of bone marrow stem cells in vitro and enhanced rat cranial defect restoration (12 weeks) in vivo. This work reports an attractive joint physico‐chemical‐biological strategy for the design of novel cell/protein‐free bioactive scaffolds for synergistic tissue regeneration.  相似文献   

13.
Recently, strong polymer‐based hydrogels have been intensively investigated. However, the development of tough protein hydrogels with controlled degradation for bone regeneration has rarely been reported. Here, regenerated silk fibroin/gelatin (RSF/G) hydrogels with both strength and controlled degradation are prepared via physically and chemically double‐crosslinked networks. As a representative example, the 9%RSF/3%G hydrogel shows approximately 80% elongation and a compressive and tensile modulus of up to 0.25 and 0.21 MPa, respectively. It also shows a degradation rate that can be adjusted to approximately three months in vivo, a value between that of the rapidly degrading gelatin hydrogel and the slowly degrading RSF hydrogel. The 9%RSF/3%G hydrogel has good biocompatibility and promotes the proliferation and differentiation of bone marrow–derived stem cells compared with the control and pure RSF hydrogels. At 12 weeks after implantation of the gel in a calvarial defect, micro‐computed tomography shows greater bone volume and bone mineral density in the 9%RSF/3%G group. More importantly, histology reveals more mineralization and enhancements in the quality and rate of bone regeneration with less of a tissue response in the 9%RSF/3%G group. These results indicate the promising potential of this tough protein hydrogel with controlled degradation for bone regeneration applications.  相似文献   

14.
Stem cell transplantation is a promising alternative therapy for rheumatoid arthritis (RA) patients, with the potential to suppress autoimmune in?ammation and prevent joint damage. However, widespread application of RA therapy based on stem cell transplantation is limited due to poor migration, local retention, and uncontrolled differentiation of stem cells. Here, inspired by the dynamic construction of bone matrix, a structurally and functionally optimized scaffold for loading bone marrow stem cells (BMSCs) is designed to aid RA management. The composite scaffolds consist of stiff 3D printing porous metal scaffolds (3DPMS) and soft multifunctional polysaccharide hydrogels, wherein 3DPMS meet the requirements for large‐scale bone defects caused by RA. Attractively, the fabricated hydrogels on the composite scaffold are self‐healable, injectable, biocompatible, and biodegradable, which endow the resultant scaffold many aspects mimicking the extracellular matrix (ECM). After encapsulation of BMSCs, hydrogels are administered into the inner pores of 3DPMS, abbreviated as BMSCs@3DPMS/hydrogels. In this study, BMSCs@3DPMS/hydrogels have a good effect on improving RA, such as remodeling of knee joint articular cartilage, inhibition of in?ammatory cytokines, and promotion of subchondral bone regeneration. Besides RA, the innovative scaffolds may also serve as an ideal biomaterial for other bone regenerative therapies in various orthopedic diseases.  相似文献   

15.
Osteochondral (OC) defects pose an enormous challenge with no entirely satisfactory repair strategy to date. Herein, a 3D printed gradient hydrogel scaffold with a similar structure to that of OC tissue is designed, involving a pure hydrogel-based top cartilage layer, an intermediate layer for calcified cartilage with 40% (w w−1) nanohydroxyapatite (nHA) and 60% (w w−1) hydrogel, and a 70/30% (w w−1) nHA/hydrogel-based bottom subchondral bone layer. This study is conducted to evaluate the efficacy of the scaffold with nHA gradients in terms of its ability to promote OC defect repair. The fabricated composites are evaluated for physicochemical, mechanical, and biological properties, and then implanted into the OC defects in 56 rats. Overall, bone marrow stromal cells (BMSCs)-loaded gradient scaffolds exhibit superior repair results as compared to other scaffolds based on gross examination, micro-computed tomography (micro-CT), as well as histologic and immunohistochemical analyses, confirming the ability of this novel OC graft to facilitate simultaneous regeneration of cartilage-subchondral bone.  相似文献   

16.
Bone related diseases have caused serious threats to human health owing to their complexity and specificity. Fortunately, owing to the unique 3D network structure with high aqueous content and functional properties, emerging hydrogels are regarded as one of the most promising candidates for bone tissue engineering, such as repairing cartilage injury, skull defect, and arthritis. Herein, various design strategies and synthesis methods (e.g., 3D-printing technology and nanoparticle composite strategy) are introduced to prepare implanted hydrogel scaffolds with tunable mechanical strength, favorable biocompatibility, and excellent bioactivity for applying in bone regeneration. Injectable hydrogels based on biocompatible materials (e.g., collagen, hyaluronic acid, chitosan, polyethylene glycol, etc.) possess many advantages in minimally invasive surgery, including adjustable physicochemical properties, filling irregular shapes of defect sites, and on-demand release drugs or growth factors in response to different stimuli (e.g., pH, temperature, redox, enzyme, light, magnetic, etc.). In addition, drug delivery systems based on micro/nanogels are discussed, and its numerous promising designs used in the application of bone diseases (e.g., rheumatoid arthritis, osteoarthritis, cartilage defect) are also briefed in this review. Particularly, several key factors of hydrogel scaffolds (e.g., mechanical property, pore size, and release behavior of active factors) that can induce bone tissue regeneration are also summarized in this review. It is anticipated that advanced approaches and innovative ideas of bioactive hydrogels will be exploited in the clinical field and increase the life quality of patients with the bone injury.  相似文献   

17.
Articular cartilage defects bring about disability and worldwide socioeconomic loss, therefore, articular cartilage repair and regeneration is recognized as a global issue. However, due to its avascular and nearly acellular characteristic, cartilage tissue regeneration ability is limited to some extent. Despite the availability of various treatment methods, including palliative drugs and surgical regenerative therapy, articular cartilage repair and regeneration still face major challenges due to the lack of appropriate methods and materials. Smart biomaterials can regulate cell behavior and provide excellent tissue repair and regeneration microenvironment, thus inducing articular cartilage repair and regeneration. This process is adjusted by controlling drug/bioactive factors release via responding to exogenous/endogenous stimuli, tailoring materials’ structure and function similar to native cartilage or providing physiochemical and physical signaling factors. Herein, smart biomaterials, recently applied in articular cartilage repair and regeneration, are elaborated from two aspects: smart drug release system and smart scaffolds. Furthermore, articular cartilage and its defects and advanced manufacturing techniques of smart biomaterials are discussed in brief. Finally, perspectives for smart biomaterials used in articular cartilage repair and regeneration are presented and the clinical translation of smart biomaterials is emphasized.  相似文献   

18.
Mimicking the endogenous physical microenvironment is a promising strategy for biomaterial-mediated tissue regeneration. However, precise control of physical cues such as electric/magnetic fields within extracellular environments to facilitate tissue regeneration remains a formidable challenge. Here, remote tuning of the magnetoelectric microenvironment is achieved by a built-in CoFe2O4/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] magnetoelectric membrane for effective bone regeneration. The magnetoelectric microenvironment from the nanocomposite membranes promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) and enhances bone defect regeneration by increasing cellular exposure and integrin binding to arginylglycylaspartic acid peptide, as predicted by molecular dynamics simulations. Moreover, BM-MSCs are directed to the osteogenic lineage by osteoimmuomodulation which involves accelerating transition from an initial inflammatory immune response to a pro-healing regenerative immune response. This work offers a strategy to mimic the magnetoelectric microenvironment for achieving precise and effective tissue regenerative therapies, as well as provides fundamental insights into the biological effects driven by the built-in magnetoelectric membrane, which can be remotely tuned to precisely modulate osteogenesis in situ.  相似文献   

19.
Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug‐delivering scaffolds. ECM‐mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation, and matrix deposition. Nanoscaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nanostructured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine.  相似文献   

20.
Despite the periodical and completely interconnected pore network that characterizes rapid prototyped scaffolds, cell seeding efficiency remains still a critical factor for optimal tissue regeneration. This can be mainly attributed to the current resolution limits in pore size. We present here novel three‐dimensional (3D) scaffolds fabricated by combining 3D fiber deposition (3DF) and electrospinning (ESP). Scaffolds consisted of integrated 3DF periodical macrofiber and random ESP microfiber networks (3DFESP). The 3DF scaffold provides structural integrity and mechanical properties, while the ESP network works as a “sieving” and cell entrapment system and offers?at the same time?cues at the extracellular matrix (ECM) scale. Primary bovine articular chondrocytes were isolated, seeded, and cultured for four weeks on 3DF and 3DFESP scaffolds to evaluate the influence of the integrated ESP network on cell entrapment and on cartilage tissue formation. 3DFESP scaffolds enhanced cell entrapment as compared to 3DF scaffolds. This was accompanied by a higher amount of ECM (expressed in terms of sulphated glycosaminoglycans or GAG) and a significantly higher GAG/DNA ratio after 28 days. SEM analysis revealed rounded cell morphology on 3DFESP scaffolds. Spread morphology was observed on 3DF scaffolds, suggesting a direct influence of fiber dimensions on cell differentiation. Furthermore, the ESP surface topology also influenced cell morphology. Thus, the integration of 3DF and ESP techniques provide a new set of “smart” scaffolds for tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号