首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrical instability and nonideality due to undesirable electron injection are often‐encountered problems for high‐mobility organic field‐effect transistors (OFETs) with low‐bandgap polymer semiconductors. Due to electron trapping and the resulting accumulation of negative charges on the silicon dioxide dielectric, transfer curves deviate from ideality characteristics and double‐slopes are observed as the devices are operated for extended periods of time. One way to circumvent those is to use an electron‐acceptor additive, such as fullerene and its derivatives. This work interprets the mechanisms of how fullerene derivatives suppress electron transport and electrical instability while maintaining high hole mobility in p‐type OFETs. This study shows that hole transport of the active layer is uninterrupted upon the addition of the electron acceptors. Most importantly, the added fullerene derivatives out‐compete SiO2 to acquire electrons that are injected into the polymers. Electrical instability and double‐slope induced from electron trapping at SiO2 surface are thereby suppressed.  相似文献   

2.
A novel strategy for analyzing bias‐stress effects in organic field‐effect transistors (OFETs) based on a four‐parameter double stretched‐exponential formula is reported. The formula is obtained by modifying a traditional single stretched‐exponential expression comprising two parameters (a characteristic time and a stretched‐exponential factor) that describe the bias‐stress effects. The expression yields two characteristic times and two stretched‐exponential factors, thereby separating out the contributions due to charge trapping events in the semiconductor layer‐side of the interface and the gate‐dielectric layer‐side of the interface. The validity of this method was tested by designing two model systems in which the physical properties of the semiconductor layer and the gate‐dielectric layer were varied systematically. It was found that the gate‐dielectric layer, in general, plays a more critical role than the semiconductor layer in the bias‐stress effects, possibly due to the wider distribution of the activation energy for charge trapping. Furthermore, the presence of a self‐assembled monolayer further widens the distribution of the activation energy for charge trapping in gate‐dielectric layer‐side of the interface and causes the channel current to decay rapidly in the early stages. The novel analysis method presented here enhances our understanding of charge trapping and provides rational guidelines for developing efficient OFETs with high performance.  相似文献   

3.
In this study, polymer‐based organic field‐effect transistors (OFETs) that exhibit alignment‐induced mobility enhancement, very small device‐to‐device variation, and high operational stability are successfully fabricated by a simple coating method of semiconductor solutions on highly hydrophobic nanogrooved surfaces. The highly hydrophobic nanogrooved surfaces (water contact angle >110°) are effective at inducing unidirectional alignment of polymer backbone structures with edge‐on orientation and are advantageous for realizing high operational stability because of their water‐repellent nature. The dewetting of the semiconductor solution is a critical problem in the thin film formation on highly hydrophobic surfaces. Dewetting during spin coating is suppressed by surrounding the hydrophobic regions with hydrophilic ones under appropriate designs. For the OFET array with an aligned terrace‐phase active layer of poly(2,5‐bis(3‐hexadecylthiophene‐2‐yl)thieno[3,2‐b]thiophene), the hole mobility in the saturation regime of 30 OFETs with channel current direction parallel to the nanogrooves is 0.513 ± 0.018 cm2 V?1 s?1, which is approximately double that of the OFETs without nanogrooves, and the intrinsic operational stability is comparable to the operational stability of amorphous‐silicon field‐effect transistors. In other words, alignment‐induced mobility enhancement and high operational stability are successfully achieved with very small device‐to‐device variation. This coating method should be a promising means of fabricating high‐performance OFETs.  相似文献   

4.
Ambipolar organic field‐effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two‐step vacuum‐deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 °C) acts as the first (p‐type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 °C) acts as the second (n‐type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10–4 cm2 V–1 s–1 in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin‐film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum‐deposition process. The structure of interpenetrating networks is similar to that of the bulk heterojunction used in organic photovoltaic cells, therefore, it may be helpful in understanding the process of charge collection in organic photovoltaic cells.  相似文献   

5.
Organic field‐effect transistors (OFETs) have attracted much attention for the next‐generation electronics. Despite of the rapid developments of OFETs, operational stability is a big challenge for their commercial applications. Moreover, the actual mechanism behind the degradation of electron transport is still poorly understood. Here, the electrical characteristics of poly{[N,N‐9‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,59‐(2,29‐bithiophene)} (P(NDI2OD‐T2)) thin‐film transistors (TFTs) as a function of semiconductor/dielectric interfacial property and environment are systematically investigated, in particular, how the copresence of water, oxygen, and active hydrogen on the surface of dielectric leads to a sharp drop‐off in threshold voltage. Evidence is found that an acid–base neutralization reaction occurring at the interface, as a combined effect of the chemical instability of dielectrics and the electrochemical instability of organic semiconductors, contributes to the significant electron trapping on the interface of P(NDI2OD‐T2) TFTs. Two strategies, increasing the intrinsic electrochemical stability of semiconductor and decreasing the chemical reactivity of gate dielectric, are demonstrated to effectively suppress the reaction and thus improve the operational stability of n‐type OFETs. The results provide an alternative degradation pathway to better understand the charge transport instability in n‐type OFETs, which is advantageous to construct high‐performance OFETs with long‐term stability.  相似文献   

6.
We investigated the effects of a gate dielectric and its solvent on the characteristics of top‐gated organic field‐effect transistors (OFETs). Despite the rough top surface of the inkjet‐printed active features, the charge transport in an OFET is still favorable, with no significant degradation in performance. Moreover, the characteristics of the OFETs showed a strong dependency on the gate dielectrics used and its orthogonal solvents. Poly(3‐hexylthiophene) OFETs with a poly(methyl methacrylate) dielectric showed typical p‐type OFET characteristics. The selection of gate dielectric and solvent is very important to achieve high‐performance organic electronic circuits.  相似文献   

7.
Contact resistance significantly limits the performance of organic field‐effect transistors (OFETs). Positioning interlayers at the metal/organic interface can tune the effective work‐function and reduce contact resistance. Myriad techniques offer interlayer processing onto the metal pads in bottom‐contact OFETs. However, most methods are not suitable for deposition on organic films and incompatible with top‐contact OFET architectures. Here, a simple and versatile methodology is demonstrated for interlayer processing in both p‐ and n‐type devices that is also suitable for top‐contact OFETs. In this approach, judiciously selected interlayer molecules are co‐deposited as additives in the semiconducting polymer active layer. During top contact deposition, the additive molecules migrate from within the bulk film to the organic/metal interface due to additive‐metal interactions. Migration continues until a thin continuous interlayer is completed. Formation of the interlayer is confirmed by X‐ray photoelectron spectroscopy (XPS) and cross‐section scanning transmission electron microscopy (STEM), and its effect on contact resistance by device measurements and transfer line method (TLM) analysis. It is shown that self‐generated interlayers that reduce contact resistance in p‐type devices, increase that of n‐type devices, and vice versa, confirming the role of additives as interlayer materials that modulate the effective work‐function of the organic/metal interface.  相似文献   

8.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

9.
Doping is a powerful tool to overcome contact limitations in short‐channel organic field‐effect transistors (OFETs) and has been successfully used in the past to improve the charge carrier injection in OFETs. The present study applies this familiar concept to the architecture of vertical organic field‐effect transistors (VOFETs), which are often severely limited by injection due to their very short channel lengths. The present study shows that the performance of p‐type VOFETs with pentacene as an active material can be significantly enhanced by the addition of the common p‐dopant C60F36 as a thin injection layer underneath the VOFET source electrode, resulting in an increase of On‐state current and On/Off ratio by one order of magnitude. The present study further investigates mixed injection layers of pentacene and the p‐dopant and finds that the improvement is less pronounced than for the pure dopant layers and depends on the concentration of dopant molecules in the injection layer. Through application of the transfer length method to equivalent OFET geometries, the present study is finally able to link the observed improvement to a decrease in transfer length and can thus conclude that this length is a crucial parameter onto which further improvement efforts have to be concentrated to realize true short‐channel VOFETs.  相似文献   

10.
The interface between the organic semiconductor and dielectric plays an important role in determining the device performance of organic field‐effect transistors (OFETs). Although self‐assembled monolayers (SAMs) made from organosilanes have been widely used for dielectric modification to improve the device performance of OFETs, they suffer from incontinuous and lack uniform coverage of the dielectric layer. Here, it is reported that by introduction of a solution‐processed organozinc compound as a dielectric modification layer between the dielectric and the silane SAM, improved surface morphology and reduced surface polarity can be achieved. The organozinc compound originates from the reaction between diethylzinc and the cyclohexanone solvent, which leads to formation of zinc carboxylates. Being annealed at different temperatures, organozinc compound exists in various forms in the solid films. With organozinc modification, p‐type polymer FETs show a high charge carrier mobility that is about two‐fold larger than a control device that does not contain the organozinc compound, both for devices with a positive threshold voltage and for those with a negative one. After organozinc compound modification, the threshold voltage of polymer FETs can either be altered to approach zero or remain unchanged depending on positive or negative threshold voltage they have.  相似文献   

11.
High‐performance top‐gated organic field‐effect transistor (OFET) memory devices using electrets and their applications to flexible printed organic NAND flash are reported. The OFETs based on an inkjet‐printed p‐type polymer semiconductor with efficiently chargeable dielectric poly(2‐vinylnaphthalene) (PVN) and high‐k blocking gate dielectric poly(vinylidenefluoride‐trifluoroethylene) (P(VDF‐TrFE)) shows excellent non‐volatile memory characteristics. The superior memory characteristics originate mainly from reversible charge trapping and detrapping in the PVN electret layer efficiently in low‐k/high‐k bilayered dielectrics. A strategy is devised for the successful development of monolithically inkjet‐printed flexible organic NAND flash memory through the proper selection of the polymer electrets (PVN or PS), where PVN/‐ and PS/P(VDF‐TrFE) devices are used as non‐volatile memory cells and ground‐ and bit‐line select transistors, respectively. Electrical simulations reveal that the flexible printed organic NAND flash can be possible to program, read, and erase all memory cells in the memory array repeatedly without affecting the non‐selected memory cells.  相似文献   

12.
The field effect transistor (FET) is arguably one of the most important circuit elements in modern electronics. Recently, a need has developed for flexible electronics in a variety of emerging applications. Examples include form‐fitting healthcare‐monitoring devices, flexible displays, and flexible radio frequency identification tags. Organic FETs (OFETs) are viable candidates for producing such flexible devices because they incorporate semiconducting π‐conjugated materials, including small molecules and conjugated polymers, which are intrinsically soft and mechanically compatible with flexible substrates. For OFETs to be industrially viable, however, they must achieve not only high charge carrier mobility, but also ideal and comprehensible electrical characteristics. Most recently, nonideal double‐slope characteristics in the transfer curves of OFETs (i.e., high slope at low gate voltage and low slope at high gate voltage), have stirred debate, which has led to different mechanistic rationales in the literature. This review focuses on the general observations, mechanistic understanding, and possible solutions associated with phenomena that result in FETs with double‐slope characteristics. By surveying and systematically summarizing in a single source relevant literature that deals with the issue of double slope, the experimental framework and theoretical basis for interpreting and avoiding this electrical nonideality in OFETs is provided.  相似文献   

13.
Nanoscale hybrid dielectrics composed of an ultra‐thin polymeric low‐κ bottom layer and an ultra‐thin high‐κ oxide top layer, with high dielectric strength and capacitances up to 0.25 μFcm?2, compatible with low‐voltage, low‐power, organic electronic circuits are demonstrated. An efficient and reliable fabrication process, with 100% yield achieved on lab‐scale arrays, is demonstrated by means of pulsed laser deposition (PLD) for the fast growth of the oxide layer. With this strategy, high capacitance top gate (TG), n‐type and p‐type organic field effect transistors (OFETs) with high mobility, low leakage currents, and low subthreshold slopes are realized and employed in complementary‐like inverters, exhibiting ideal switching for supply voltages as low as 2 V. Importantly, the hybrid double‐layer allows for a neat decoupling between the need for a high capacitance, guaranteed by the nanoscale thickness of the double layer, and for an optimized semiconductor–dielectric interface, a crucial point in enabling high mobility OFETs, thanks to the low‐κ polymeric dielectric layer in direct contact with the polymer semiconductor. It is shown that such decoupling can be achieved already with a polymer dielectric as thin as 10 nm when the top oxide is deposited by PLD. This paves the way for a very versatile implementation of the proposed approach for the scaling of the operating voltages of TG OFETs with very low level of dielectric leakage currents to the fabrication of low‐voltage organic electronics with drastically reduced power consumption.  相似文献   

14.
Controlling the interfacial properties between the electrode and active layer in organic field‐effect transistors (OFETs) can significantly affect their contact properties, resulting in improvements in device performance. However, it is difficult to apply to top‐contact‐structured OFETs (one of the most useful device structures) because of serious damage to the organic active layer by exposing solvent. Here, a spontaneously controlled approach is explored for optimizing the interface between the top‐contacted source/drain electrode and the polymer active layer to improve the contact resistance (RC). To achieve this goal, a small amount of interface‐functionalizing species is blended with the p‐type polymer semiconductor and functionalized at the interface region at once through a thermal process. The RC values dramatically decrease after introduction of the interfacial functionalization to 15.9 kΩ cm, compared to the 113.4 kΩ cm for the pristine case. In addition, the average field‐effect mobilities of the OFET devices increase more than three times, to a maximum value of 0.25 cm2 V?1 s?1 compared to the pristine case (0.041 cm2 V?1 s?1), and the threshold voltages also converge to zero. This study overcomes all the shortcomings observed in the existing results related to controlling the interface of top‐contact OFETs by solving the discomfort of the interface optimization process.  相似文献   

15.
A graphite thin film was investigated as the drain and source electrodes for bottom‐contact organic field‐effect transistors (BC OFETs). Highly conducting electrodes (102 S cm?1) at room temperature were obtained from pyrolyzed poly(l,3,4‐oxadiazole) (PPOD) thin films that were prepatterned with a low‐cost inkjet printing method. Compared to the devices with traditional Au electrodes, the BC OFETs showed rather high performances when using these source/drain electrodes without any further modification. Being based on a graphite‐like material these electrodes possess excellent compatibility and proper energy matching with both p‐ and n‐type organic semiconductors, which results in an improved electrode/organic‐layer contact and homogeneous morphology of the organic semiconductors in the conducting channel, and finally a significant reduction of the contact resistance and enhancement of the charge‐carrier mobility of the devices is displayed. This work demonstrates that with the advantages of low‐cost, high‐performance, and printability, PPOD could serve as an excellent electrode material for BC OFETs.  相似文献   

16.
Polyelectrolytes are promising materials as gate dielectrics in organic field‐effect transistors (OFETs). Upon gate bias, their polarization induces an ionic charging current, which generates a large double layer capacitor (10–500 µF cm?2) at the semiconductor/electrolyte interface. The resulting transistor operates at low voltages (<1 V) and its conducting channel is formed in ~50 µs. The effect of ionic currents on the performance of the OFETs is investigated by varying the relative humidity of the device ambience. Within defined humidity levels and potential values, the water electrolysis is negligible and the OFETs performances are optimum.  相似文献   

17.
Dopants, i.e., electronically active impurities, are added to organic semiconductor materials to control the material's Fermi level and conductivity, to improve injection at the device contacts, or to fill trap states in the active device layers and interfaces. In contrast to bulk doping as achieved by blending or co‐deposition of dopant and semiconductor, surface doping has a lower propensity to introduce additional traps or scattering centers or to even alter the layer morphology relative to the undoped active material layers. In this study, the electrical effects of a very simple, post‐device‐fabrication surface doping process involving various amine group–containing alkoxysilanes on the performance of organic field‐effect transistors (OFETs) made from the well‐known n‐type materials PTCDI‐C8 and N2200 are researched. It is demonstrated that OFETs doped in such a way generally show enhanced characteristics (up to 10 times mobility increase and a significant reduction in threshold voltage) without any adverse effects on the devices' on/off ratio. It is also shown that the efficiency of the doping process is linked to the number of amine groups.  相似文献   

18.
Enhancing the device performance of single crystal organic field effect transistors (OFETs) requires both optimized engineering of efficient injection of the carriers through the contact and improvement of the dielectric interface for reduction of traps and scattering centers. Since the accumulation and flow of charge carriers in operating organic FETs takes place in the first few layers of the semiconductor next to the dielectric, the mobility can be easily degraded by surface roughness, charge traps, and foreign molecules at the interface. Here, a novel structure for high‐performance rubrene OFETs is demonstrated that uses graphene and hexagonal boron nitride (hBN) as the contacting electrodes and gate dielectric layer, respectively. These hetero‐stacked OFETs are fabricated by lithography‐free dry‐transfer method that allows the transfer of graphene and hBN on top of an organic single crystal, forming atomically sharp interfaces and efficient charge carrier‐injection electrodes without damage or contamination. The resulting heterostructured OFETs exhibit both high mobility and low operating gate voltage, opening up new strategy to make high‐performance OFETs and great potential for flexible electronics.  相似文献   

19.
The thin‐film structures of chemical sensors based on conventional organic field‐effect transistors (OFETs) can limit the sensitivity of the devices toward chemical vapors, because charge carriers in OFETs are usually concentrated within a few molecular layers at the bottom of the organic semiconductor (OSC) film near the dielectric/semiconductor interface. Chemical vapor molecules have to diffuse through the OSC films before they can interact with charge carriers in the OFET conduction channel. It has been demonstrated that OFET ammonia sensors with porous OSC films can be fabricated by a simple vacuum freeze‐drying template method. The resulted devices can have ammonia sensitivity not only much higher than the pristine OFETs with thin‐film structure but also better than any previously reported OFET sensors, to the best of our knowledge. The porous OFETs show a relative sensitivity as high as 340% ppm?1 upon exposure to 10 parts per billion (ppb) NH3. In addition, the devices also exhibit decent selectivity and stability. This general and simple strategy can be applied to a wide range of OFET chemical sensors to improve the device sensitivity.  相似文献   

20.
High photovoltaic device performance is demonstrated in ambient‐air‐processed bulk heterojunction solar cells having an active blend layer of organic poly(3‐hexylthiophene) (P3HT): [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), with power conversion efficiencies as high as 4.1%, which is comparable to state‐of‐the‐art bulk heterojunction devices fabricated in air‐free environments. High‐resolution transmission electron microscopy is combined with detailed analysis of electronic carrier transport in order to quantitatively understand the effects of oxygen exposure and different thermal treatments on electronic conduction through the highly nanostructured active blend network. Improvement in photovoltaic device performance by suitable post‐fabrication thermal processing results from the reduced oxygen charge trap density in the active blend layer and is consistent with a corresponding slight increase in thickness of an ~4 nm aluminum oxide hole‐blocking layer present at the electron‐collecting contact interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号