首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large‐size 2D black phosphorus (BP) nanosheets have been successfully synthesized by a facile liquid exfoliation method. The as‐prepared BP nanosheets are used to fabricate electrodes for a self‐powered photodetector and exhibit preferable photoresponse activity as well as environmental robustness. Photoelectrochemical (PEC) tests demonstrate that the current density of BP nanosheets can reach up to 265 nA cm?2 under light irradiation, while the dark current densities fluctuate near 1 nA cm?2 in 0.1 M KOH. UV–vis and Raman spectra are carried out and confirm the inherent optical and physical properties of BP nanosheets. In addition, the cycle stability measurement exhibits no detectable distinction after processing 50 and 100 cycles, while an excellent on/off behavior is still preserved even after one month. Furthermore, the PEC performance of BP nanosheets‐based photodetector is evaluated in various KOH concentrations, which demonstrates that the as‐prepared BP nanosheets may have a great potential application in self‐powered photodetector. It is anticipated that the present work can provide fundamental acknowledgement of the performance of a PEC‐type BP nanosheets‐based photodetector, offering extendable availabilities for 2D BP‐based heterostructures to construct high‐performance PEC devices.  相似文献   

2.
Research on van der Waals heterostructures based on stacked 2D atomic crystals is intense due to their prominent properties and potential applications for flexible transparent electronics and optoelectronics. Here, nonvolatile memory devices based on floating‐gate field‐effect transistors that are stacked with 2D materials are reported, where few‐layer black phosphorus acts as channel layer, hexagonal boron nitride as tunnel barrier layer, and MoS2 as charge trapping layer. Because of the ambipolar behavior of black phosphorus, electrons and holes can be stored in the MoS2 charge trapping layer. The heterostructures exhibit remarkable erase/program ratio and endurance performance, and can be developed for high‐performance type‐switching memories and reconfigurable inverter logic circuits, indicating that it is promising for application in memory devices completely based on 2D atomic crystals.  相似文献   

3.
Black phosphorus (BP) has become one of the most promising materials for photoelectronic devices due to its excellent properties. However, the intrinsic instability of BP has severely hindered its practical applications. In this contribution, a hydrophobic polyionic liquid poly(1‐hexyl‐3‐vinylimidazolium) hexafluorophosphate salt (PIL‐TFSI) is applied to encapsulate BP quantum dots to form BP‐PIL for photo‐electrochemical‐type photodetector (PD) application. From both the results of experiment and density functional theory, the significantly enhanced stability of BP as well as the fluorination of BP is found. The as‐prepared PDs exhibit obviously improved photoresponse behavior (542 nA cm?2) and negligible attenuation after 90 days. In addition, the self‐healing capability can be found in the prepared PDs and the typical ON/OFF signals can still be detected after 50 cycles due to the self‐healing nature of PIL‐TFSI. It is believed that the introduction of PIL‐TFSI provides a new route for enhancing the stability of BP‐based photoelectronic devices in practical applications.  相似文献   

4.
Well defined nanostructured polymeric supramolecular assemblies are formed when an asymmetric perylenebisimide substituted with ethylhexyl chains on one end and functionalized with 3‐pentadecylphenol at the other termini ( PDP‐UPBI ) is complexed with poly(4‐vinylpyridine) (P4VP) via a non‐covalent specific interaction such as hydrogen‐bonding. The resulting P4VP(PDP‐UPBI) n complexes are fully solution processable. The bulk structure and morphologies of the supramolecular film studied using small angle and wide angle X‐ray scattering reveals highly crystalline nature of the complex. Thin film morphology of the 1:1 complex analyzed using transmission electron microscopy shows uniform lamellar structures in the domain range of 5–10 nm. A clear trend of improved electrical parameters in P4VP(PDP‐UPBI) system compared to pristine ( PDP‐UPBI ) is observed from space charge limited current measurements. In short, a simple and facile method to obtain spatially defined organization of n‐type semiconductor perylenebisimide molecules using hydrogen bonding interactions with P4VP as the structural motif is showcased herein.  相似文献   

5.
Highly ordered, homogeneous polymer nanocomposites of layered graphene oxide are prepared using a vacuum‐assisted self‐assembly (VASA) technique. In VASA, all components (nanofiller and polymer) are pre‐mixed prior to assembly under a flow, making it compatible with either hydrophilic poly(vinyl alcohol) (PVA) or hydrophobic poly(methyl methacrylate) (PMMA) for the preparation of composites with over 50 wt% filler. This process is complimentary to layer‐by‐layer assembly, where the assembling components are required to interact strongly (e.g., via Coulombic attraction). The nanosheets within the VASA‐assembled composites exhibit a high degree of order with tunable intersheet spacing, depending on the polymer content. Graphene oxide–PVA nanocomposites, prepared from water, exhibit greatly improved modulus values in comparison to films of either pure PVA or pure graphene oxide. Modulus values for graphene oxide–PMMA nanocomposites, prepared from dimethylformamide, are intermediate to those of the pure components. The differences in structure, modulus, and strength can be attributed to the gallery composition, specifically the hydrogen bonding ability of the intercalating species  相似文献   

6.
7.
Functionalized mesoporous silica materials (MSMs) are extensively investigated in sensing science due to their diverse structural and optical properties including tunable pore size, modifiable surface properties, and excellent accessibility to active sites. In the last few years, great efforts have been devoted to developing modification methods for MSMs for sensing applications with augmented sensitivity, super selectivity, as well as targeting capability, and multimodal capabilities. The functional group, structure, morphology, and component levels in the assembly of heterostructures of MSMs are a key for high sensing performance. As the development of mesoporous silica‐based sensing materials progresses, diverse functional units and materials are rationally implemented into the mesoporous structures. These heterostructures can maintain the excellent structural features of mesoporous silica and the optical properties of the functional units simultaneously, which shows the advantages of photostability, design flexibility, and multifunctionality. Here, an up‐to‐date overview of the fabrication strategies, the properties, and the sensing mechanisms of optical heterostructures based on MSMs is provided. A number of crucial sensing domains, including ionic, molecules, temperature, and biological species are highlighted. Finally, the prospects and potential sensing applications of mesoporous silica‐based optical heterostructures are discussed.  相似文献   

8.
Ordered nanostructured crystals of thin organic–inorganic metal halide perovskites (OIHPs) are of great interest to researchers because of the dimensional‐dependence of their photoelectronic properties for developing OIHPs with novel properties. Top‐down routes such as nanoimprinting and electron beam lithography are extensively used for nanopatterning OIHPs, while bottom‐up approaches are seldom used. Herein, developed is a simple and robust route, involving the controlled crystallization of the OIHPs templated with a self‐assembled block copolymer (BCP), for fabricating nanopatterned OIHP films with various shapes and nanodomain sizes. When the precursor solution consisting of methylammonium lead halide (MAPbX3, X = Br?, I?) perovskite and poly(styrene)‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) is spin‐coated on the substrate, a nanostructured BCP is developed by microphase separation. Spontaneous crystallization of the precursor ions preferentially coordinated with the P2VP domains yields ordered nanocrystals with various nanostructures (cylinders, lamellae, and cylindrical mesh) with controlled domain size (≈40–72 nm). The nanopatterned OIHPs show significantly enhanced photoluminescence (PL) with high resistance to both humidity and heat due to geometrically confining OIHPs in and passivation with the P2VP chains. The self‐assembled OIHP films with high PL performance provide a facile control of color coordinates by color conversion layers in blue‐emitting devices for cool‐white emission.  相似文献   

9.
Polypyrrole nanowires formed by polymerization of pyrrole on a DNA template self‐assemble into rope‐like structures. These ‘nanoropes’ may be quite smooth (diameters 5–30 nm) or may show frayed ends where individual strands are visible. A combination of electric force microscopy, conductive atomic force microscopy and two‐terminal current–voltage measurements show that they are conductive. Nanoropes adhere more weakly to hydrophobic surfaces prepared by silanization of SiO2 than to the clean oxide; this effect can be used to aid the combing of the nanoropes across microelectrode devices for electrical characterization.  相似文献   

10.
Shear thinning hydrogels are promising materials that exhibit rapid self‐healing following the cessation of shear, making them attractive for applications including injectable biomaterials. Here, self‐assembly is demonstrated as a strategy to introduce a reinforcing network within shear thinning artificially engineered protein gels, enabling a responsive transition from an injectable state at low temperatures with a low yield stress to a stiffened state at physiological temperatures with resistance to shear thinning, higher toughness, and reduced erosion rates and creep compliance. Protein‐polymer triblock copolymers capable of the responsive self‐assembly of two orthogonal networks are synthesized. Midblock association forms a shear‐thinning network, while endblock aggregation at elevated temperatures introduces a second, independent physical network into the protein hydrogel. These reversible crosslinks introduce extremely long relaxation times and lead to a five‐fold increase in the elastic modulus, significantly larger than is expected from transient network theory. Thermoresponsive reinforcement reduces the high temperature creep compliance by over four orders of magnitude, decreases the erosion rate by at least a factor of five, and increases the yield stress by up to a factor of seven. Combined with the demonstrated potential of shear thinning artificial protein hydrogels for various uses, this reinforcement mechanism broadens the range of applications that can be addressed with shear‐thinning physical gels.  相似文献   

11.
12.
A mesostructured spinel Li4Ti5O12 (LTO)‐carbon nanocomposite (denoted as Meso‐LTO‐C) with large (>15 nm) and uniform pores is simply synthesized via block copolymer self‐assembly. Exceptionally high rate capability is then demonstrated for Li‐ion battery (LIB) negative electrodes. Polyisoprene‐block‐poly(ethylene oxide) (PI‐b‐PEO) with a sp2‐hybridized carbon‐containing hydrophobic block is employed as a structure‐directing agent. Then the assembled composite material is crystallized at 700 °C enabling conversion to the spinel LTO structure without loss of structural integrity. Part of the PI is converted to a conductive carbon that coats the pores of the Meso‐LTO‐C. The in situ pyrolyzed carbon not only maintains the porous mesostructure as the LTO is crystallized, but also improves the electronic conductivity. A Meso‐LTO‐C/Li cell then cycles stably at 10 C‐rate, corresponding to only 6 min for complete charge and discharge, with a reversible capacity of 115 mA h g?1 with 90% capacity retention after 500 cycles. In sharp contrast, a Bulk‐LTO/Li cell exhibits only 69 mA h g?1 at 10 C‐rate. Electrochemical impedance spectroscopy (EIS) with symmetric LTO/LTO cells prepared from Bulk‐LTO and Meso‐LTO‐C cycled in different potential ranges reveals the factors contributing to the vast difference between the rate‐capabilities. The carbon‐coated mesoporous structure enables highly improved electronic conductivity and significantly reduced charge transfer resistance, and a much smaller overall resistance is observed compared to Bulk‐LTO. Also, the solid electrolyte interphase (SEI)‐free surface due to the limited voltage window (>1 V versus Li/Li+) contributes to dramatically reduced resistance.  相似文献   

13.
Supramolecular self‐assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule‐forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross‐linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single‐step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self‐assembled constructs.  相似文献   

14.
Self‐assembly in the presence of external forces is an adaptive, directed organization of molecular components under nonequilibrium conditions. While forces may be generated as a result of spontaneous interactions among components of a system, intervention with external forces can significantly alter the final outcome of self‐assembly. Superimposing these intrinsic and extrinsic forces provides greater degrees of freedom to control the structure and function of self‐assembling materials. In this work we investigate the role of electric fields during the dynamic self‐assembly of a negatively charged polyelectrolyte and a positively charged peptide amphiphile in water leading to the formation of an ordered membrane. In the absence of electric fields, contact between the two solutions of oppositely charged molecules triggers the growth of closed membranes with vertically oriented fibrils that encapsulate the polyelectrolyte solution. This process of self‐assembly is intrinsically driven by excess osmotic pressure of counterions and the electric field is found to modify the kinetics of membrane formation as well as membrane morphology and properties. Depending on the strength and orientation of the field we observe a significant increase or decrease of up to nearly 100% in membrane thickness, or the controlled rotation of nanofiber growth direction by 90 degrees which leads to a significant increase in mechanical stiffness. These results suggest the possibility of using electric fields to control structure in self‐assembly processes that involve the diffusion of oppositely charged molecules.  相似文献   

15.
We here report on polymeric solid‐state self‐assembly leading to organization over six length scales, ranging from the molecular scale up to the macroscopic length scale. We combine several concepts, i.e., rod‐like helical and disc‐like liquid crystallinity, block copolymer self‐assembly, DNA‐like interactions to form an ionic polypeptide–nucleotide complex and packing frustration to construct mesoscale fibrils. Ionic complexation of anionic deoxyguanosine monophosphate (dGMP) and triblock coil–rod–coil copolypeptides is used with cationic end blocks and a helical rod‐like midblock. The guanines undergo Hoogsteen pairing to form supramolecular discs, they π‐stack into columns that self‐assemble into hexagonal arrays that are controlled by the end blocks. Packing frustration between the helical rods from the block copolymer midblock and the discotic motif limits the lateral growth of the assembly thus affording mesoscale fibrils, which in turn, form an open fibrillar network. The concepts suggest new rational methodologies to construct structures on multiple length scales in order to tune polymer properties.  相似文献   

16.
Carbon nanotube‐silicon (CNT‐Si)‐based heterojunction solar cells (HJSCs) are a promising photovoltaic (PV) system. Herein, few‐layer black phosphorus (FL‐BP) sheets are produced in N‐methyl‐2‐pyrrolidone (NMP) using microwave‐assisted liquid‐phase exfoliation and introduced into the CNTs‐Si‐based HJSCs for the first time. The NMP‐based FL‐BP sheets remain stable after mixing with aqueous CNT dispersion for device fabrication. Due to their unique 2D structure and p‐type dominated conduction, the FL‐BP/NMP incorporated CNT‐Si devices show an impressive improvement in the power conversion efficiency from 7.52% (control CNT‐Si cell) to 9.37%. Our density‐functional theory calculation reveals that lowest unoccupied molecular orbital (LUMO) of FL‐BP is higher in energy than that of single‐walled CNT. Therefore, we observed a reduction in the orbitals localized on FL‐BP upon highest occupied molecular orbital to LUMO transition, which corresponds to an improved charge transport. This study opens a new avenue in utilizing 2D phosphorene nanosheets for next‐generation PVs.  相似文献   

17.
Photo‐ and mechanoluminescent materials that exhibit tunable emission properties when subjected to external stimuli have a wide variety of applications. However, most mechanoresponsive materials have a mechano‐induced structural transition from crystalline to amorphous phase, and there are only few reports on the crystalline to crystalline transformation. This study reports an amide‐linked dyad P1 containing spiropyran and naphthalimide chromophores with dual sensitivity of photochromism and mechanochromism. Under light and mechanical stimuli, P1 performs different color transition. With mechanical force, the morphologies of P1 change from microfiber to nanosphere and the amide group in P1 plays a vital role in these transition processes. Mechanical force can induce the morphology change of P1 through enhancing π–π stacking and destroying hydrogen bonds. These results demonstrate the feasibility of the design strategy for new mechanoresponsive switching materials: both π?π stacking and hydrogen bonding of the dyad contribute the mechano‐induced crystalline/crystalline transformation.  相似文献   

18.
Self‐assembly of 3D structures presents an attractive and scalable route to realize reconfigurable and functionally capable mesoscale devices without human intervention. A common approach for achieving this is to utilize stimuli‐responsive folding of hinged structures, which requires the integration of different materials and/or geometric arrangements along the hinges. It is demonstrated that the inclusion of Kirigami cuts in planar, hingeless bilayer thin sheets can be used to produce complex 3D shapes in an on‐demand manner. Nonlinear finite element models are developed to elucidate the mechanics of shape morphing in bilayer thin sheets and verify the predictions through swelling experiments of planar, millimeter‐scaled PDMS (polydimethylsiloxane) bilayers in organic solvents. Building upon the mechanistic understandings, The transformation of Kirigami‐cut simple bilayers into 3D shapes such as letters from the Roman alphabet (to make “ADVANCED FUNCTIONAL MATERIALS”) and open/closed polyhedral architectures is experimentally demonstrated. A possible application of the bilayers as tether‐less optical metamaterials with dynamically tunable light transmission and reflection behaviors is also shown. As the proposed mechanistic design principles could be applied to a variety of materials, this research broadly contributes toward the development of smart, tetherless, and reconfigurable multifunctional systems.  相似文献   

19.
20.
Conductive electrodes held at kV potentials and patterned with non‐conductive circular islands can drive templated self‐assembly (TSA) of millimeter‐sized polymeric particles. It is found, however, that the complementarity of the shapes of the “capturing” islands and the projected shapes of the “adsorbing” particles is insufficient to produce high quality assemblies. For instance, while spherical particles center onto circular islands and form highly regular arrays, disk‐shaped particles remain off‐centered on the same islands. These effects are due to frictional effects that compete with electrostatic forces during TSA. A finite‐element model is used to quantify the forces acting in the system and suggests heuristic rules that guide the design of islands capturing particles of desired shapes and sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号