首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The design of many promising, newly emerging classes of photonic metamaterials and subwavelength confinement structures requires detailed knowledge and understanding of the electromagnetic near‐field interactions between their building blocks. While the electric field distributions and, respectively, the electric interactions of different nanostructures can be routinely measured, for example, by scattering near‐field microscopy, only recently experimental methods for imaging the magnetic field distributions became available. In this paper, we provide direct experimental maps of the lateral magnetic near‐field distributions of variously shaped plasmonic nanoantennas by using hollow‐pyramid aperture scanning near‐field optical microscopy (SNOM). We study both simple plasmonic nanoresonators, such as bars, disks, rings and more complex antennas. For the studied structures, the magnetic near‐field distributions of the complex resonators have been found to be a superposition of the magnetic near‐fields of the individual constituting elements. These experimental results, explained and validated by numerical simulations, open new possibilities for engineering and characterization of complex plasmonic antennas with increased functionality.  相似文献   

2.
The controlled nanoscale patterning of 2D materials is a promising approach for engineering the optoelectronic, thermal, and mechanical properties of these materials to achieve novel functionalities and devices. Herein, high‐resolution patterning of hexagonal boron nitride (h‐BN) is demonstrated via both helium and neon ion beams and an optimal dosage range for both ions that serve as a baseline for insulating 2D materials is identified. Through this nanofabrication approach, a grating with a 35 nm pitch, individual structure sizes down to 20 nm, and additional nanostructures created by patterning crystal step edges are demonstrated. Raman spectroscopy is used to study the defects induced by the ion beam patterning and is correlated to scanning probe microscopy. Photothermal and scanning near‐field optical microscopy measure the resulting near‐field absorption and scattering of the nanostructures. These measurements reveal a large photothermal expansion of nanostructured h‐BN that is dependent on the height to width aspect ratio of the nanostructures. This effect is attributed to the large anisotropy of the thermal expansion coefficients of h‐BN and the nanostructuring implemented. The photothermal expansion should be present in other van der Waals materials with large anisotropy and can lead to applications such as nanomechanical switches driven by light.  相似文献   

3.
Single‐walled carbon nanotubes (SWCNTs) are a class of 1D nanomaterials that exhibit extraordinary electrical and optical properties. However, many of their fundamental studies and practical applications are stymied by sample polydispersity. SWCNTs are synthesized in bulk with broad structural (chirality) and geometrical (length and diameter) distributions; problematically, all known post‐synthetic sorting methods rely on ultrasonication, which cuts SWCNTs into short segments (typically <1 µm). It is demonstrated that ultralong (>10 µm) SWCNTs can be efficiently separated from shorter ones through a solution‐phase “self‐sorting”. It is shown that thin‐film transistors fabricated from long semiconducting SWCNTs exhibit a carrier mobility as high as ≈90 cm2 V?1 s?1, which is ≈10 times higher than those which use shorter counterparts and well exceeds other known materials such as organic semiconducting polymers (<1 cm2 V?1 s?1), amorphous silicon (≈1 cm2 V?1 s?1), and nanocrystalline silicon (≈50 cm2 V?1 s?1). Mechanistic studies suggest that this self‐sorting is driven by the length‐dependent solution phase behavior of rigid rods. This length sorting technique shows a path to attain long‐sought ultralong, electronically pure carbon nanotube materials through scalable solution processing.  相似文献   

4.
Colloidal quantum dots (CQDs) are nanoscale building blocks for bottom‐up fabrication of semiconducting solids with tailorable properties beyond the possibilities of bulk materials. Achieving ordered, macroscopic crystal‐like assemblies has been in the focus of researchers for years, since it would allow exploitation of the quantum‐confinement‐based electronic properties with tunable dimensionality. Lead‐chalcogenide CQDs show especially strong tendencies to self‐organize into 2D superlattices with micrometer‐scale order, making the array fabrication fairly simple. However, most studies concentrate on the fundamentals of the assembly process, and none have investigated the electronic properties and their dependence on the nanoscale structure induced by different ligands. Here, it is discussed how different chemical treatments on the initial superlattices affect the nanostructure, the optical, and the electronic‐transport properties. Transistors with average two‐terminal electron mobilities of 13 cm2 V?1 s?1 and contactless mobility of 24 cm2 V?1 s?1 are obtained for small‐area superlattice field‐effect transistors. Such mobility values are the highest reported for CQD devices wherein the quantum confinement is substantially present and are comparable to those reported for heavy sintering. The considerable mobility with the simultaneous preservation of the optical bandgap displays the vast potential of colloidal QD superlattices for optoelectronic applications.  相似文献   

5.
Plasmonic nanostructures separated by nanogaps enable strong electromagnetic‐field confinement on the nanoscale for enhancing light‐matter interactions, which are in great demand in many applications such as surface‐enhanced Raman scattering (SERS). A simple M‐shaped nanograting with narrow V‐shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room‐temperature nanoimprinting lithography and anisotropic reactive‐ion etching is developed to fabricate this device, which is cost‐effective, reliable, and suitable for fabricating large‐area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×108 has been achieved, which verifies the greatly enhanced light–matter interaction on the surface of the M grating over that of traditional SERS surfaces.  相似文献   

6.
Organic field‐effect transistor (OFET) memory devices made using highly stable iron‐storage protein nanoparticle (NP) multilayers and pentacene semiconductor materials are introduced. These transistor memory devices have nonvolatile memory properties that cause reversible shifts in the threshold voltage (Vth) as a result of charge trapping and detrapping in the protein NP (i.e., the ferritin NP with a ferrihydrite phosphate core) gate dielectric layers rather than the metallic NP layers employed in conventional OFET memory devices. The protein NP‐based OFET memory devices exhibit good programmable memory properties, namely, large memory window ΔVth (greater than 20 V), a fast switching speed (10 μs), high ON/OFF current ratio (above 104), and good electrical reliability. The memory performance of the devices is significantly enhanced by molecular‐level manipulation of the protein NP layers, and various biomaterials with heme FeIII/FeII redox couples similar to a ferrihydrite phosphate core are also employed as charge storage dielectrics. Furthermore, when these protein NP multilayers are deposited onto poly(ethylene naphthalate) substrates coated with an indium tin oxide gate electrode and a 50‐nm‐thick high‐k Al2O3 gate dielectric layer, the approach is effectively extended to flexible protein transistor memory devices that have good electrical performance within a range of low operating voltages (<10 V) and reliable mechanical bending stability.  相似文献   

7.
Plasmonics has emerged as an attractive field driving the development of optical systems in order to control and exploit light–matter interactions. The increasing interest around plasmonic systems is pushing the research of alternative plasmonic materials, spreading the operability range from IR to UV. Within this context, gallium appears as an ideal candidate, potentially active within a broad spectral range (UV–VIS–IR), whose optical properties are scarcely reported. Importantly, the smart design of active plasmonic materials requires their characterization at high spatial and spectral resolution to access the optical fingerprint of individual nanostructures, attainable by transmission electron microscopy techniques (i.e., by means of electron energy‐loss spectroscopy, EELS). Therefore, the optical response of individual Ga nanoparticles (NPs) by means of EELS measurements is analyzed, in order to spread the understanding of the plasmonic response of Ga NPs. The results show that single Ga NPs may support several plasmon modes, whose nature is extensively discussed.  相似文献   

8.
All the optical properties of materials are derived from dielectric function. In spectral region where the dielectric permittivity approaches zero, known as epsilon‐near‐zero (ENZ) region, the propagating light within the material attains a very high phase velocity, and meanwhile the material exhibits strong optical nonlinearity. The interplay between the linear and nonlinear optical response in these materials thus offers unprecedented pathways for all‐optical control and device design. Here the authors demonstrate ultrafast all‐optical modulation based on a typical ENZ material of indium tin oxide (ITO) nanocrystals (NCs), accessed by a wet‐chemistry route. In the ENZ region, the authors find that the optical response in these ITO NCs is associated with a strong nonlinear character, exhibiting sub‐picosecond response time (corresponding to frequencies over 2 THz) and modulation depth up to ≈160%. This large optical nonlinearity benefits from the highly confined geometry in addition to the ENZ enhancement effect of the ITO NCs. Based on these ENZ NCs, the authors successfully demonstrate a fiber optical switch that allows switching of continuous laser wave into femtosecond laser pulses. Combined with facile processibility and tunable optical properties, these solution‐processed ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices.  相似文献   

9.
The family of 2D semiconductors (2DSCs) has grown rapidly since the first isolation of graphene. The emergence of each 2DSC material brings considerable excitement for its unique electrical, optical, and mechanical properties, which are often highly distinct from their 3D counterparts. To date, studies of 2DSC are majorly focused on group IV (e.g., graphene, silicene), group V (e.g., phosphorene), or group VIB compounds (transition metal dichalcogenides, TMD), and have inspired considerable effort in searching for novel 2DSCs. Here, the first electrical characterization of group IV–V compounds is presented by investigating few‐layer GeAs field‐effect transistors. With back‐gate device geometry, p‐type behaviors are observed at room temperature. Importantly, the hole carrier mobility is found to approach 100 cm2 V?1 s?1 with ON–OFF ratio over 105, comparable well with state‐of‐the‐art TMD devices. With the unique crystal structure the few‐layer GeAs show highly anisotropic optical and electronic properties (anisotropic mobility ratio of 4.8). Furthermore, GeAs based transistor shows prominent and rapid photoresponse to 1.6 µm radiation with a photoresponsivity of 6 A W?1 and a rise and fall time of ≈3 ms. This study of group IV–V 2DSC materials greatly expands the 2D family, and can enable new opportunities in functional electronics and optoelectronics based on 2DSCs.  相似文献   

10.
Vastly improved fiber probes for SNOM microscopy are the result of a new chemical etching method. The optical fiber's protective polymer coating is left on during the etching process, which gives rise to greatly improved tip surfaces (see Figure, right). The tips have a much higher damage threshold, allowing brighter transmission and opening the door to Raman imaging (e.g. of DNA) and laser ablation.  相似文献   

11.
Single‐walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next‐generation printed electronic transistor materials. However, large‐scale solution‐based parallel assembly of SWNTs to obtain high‐performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution‐based technique can achieve this. Herein a novel solution‐based technique, the immersion‐cum‐shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s‐SWNTs). By immersing an aminosilane‐treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT‐based field‐effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 104 and mobility 46.5 cm2/Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm2 and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large‐scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large‐area electronics.  相似文献   

12.
New 3,3′‐dithioalkyl‐2,2′‐bithiophene ( SBT )‐based small molecular and polymeric semiconductors are synthesized by end‐capping or copolymerization with dithienothiophen‐2‐yl units. Single‐crystal, molecular orbital computations, and optical/electrochemical data indicate that the SBT core is completely planar, likely via S(alkyl)?S(thiophene) intramolecular locks. Therefore, compared to semiconductors based on the conventional 3,3′‐dialkyl‐2,2′‐bithiophene, the resulting SBT systems are planar (torsional angle <1°) and highly π‐conjugated. Charge transport is investigated for solution‐sheared films in field‐effect transistors demonstrating that SBT can enable good semiconducting materials with hole mobilities ranging from ≈0.03 to 1.7 cm2 V?1 s?1. Transport difference within this family is rationalized by film morphology, as accessed by grazing incidence X‐ray diffraction experiments.  相似文献   

13.
The application of nanoscale electrical and biological devices will benefit from the development of nanomanufacturing technologies that are high‐throughput, low‐cost, and flexible. Utilizing nanomaterials as building blocks and organizing them in a rational way constitutes an attractive approach towards this goal and has been pursued for the past few years. The optical near‐field nanoprocessing of nanoparticles for high‐throughput nanomanufacturing is reported. The method utilizes fluidically assembled microspheres as a near‐field optical confinement structure array for laser‐assisted nanosintering and nanoablation of nanoparticles. By taking advantage of the low processing temperature and reduced thermal diffusion in the nanoparticle film, a minimum feature size down to ≈100 nm is realized. In addition, smaller features (50 nm) are obtained by furnace annealing of laser‐sintered nanodots at 400 °C. The electrical conductivity of sintered nanolines is also studied. Using nanoline electrodes separated by a submicrometer gap, organic field‐effect transistors are subsequently fabricated with oxygen‐stable semiconducting polymer.  相似文献   

14.
Photodetection over a broad spectral range is crucial for optoelectronic applications such as sensing, imaging, and communication. Herein, a high‐performance ultra‐broadband photodetector based on PdSe2 with unique pentagonal atomic structure is reported. The photodetector responds from visible to mid‐infrared range (up to ≈4.05 µm), and operates stably in ambient and at room temperature. It promises improved applications compared to conventional mid‐infrared photodetectors. The highest responsivity and external quantum efficiency achieved are 708 A W?1 and 82 700%, respectively, at the wavelength of 1064 nm. Efficient optical absorption beyond 8 µm is observed, indicating that the photodetection range can extend to longer than 4.05 µm. Owing to the low crystalline symmetry of layered PdSe2, anisotropic properties of the photodetectors are observed. This emerging material shows potential for future infrared optoelectronics and novel devices in which anisotropic properties are desirable.  相似文献   

15.
A flexible and stretchable field‐effect transistor (FET) is an essential element in a number of modern electronics. To realize the potential of this device in harsh real‐world conditions and to extend its application spectrum, new functionalities are needed to be introduced into the device. Here, solution‐processable elements based on carbon nanotubes that empower flexible and stretchable FET with high hole‐mobility (µh ≈ 10 cm2 V?1 s?1) and relatively low operating voltages (<8 V) and that retain self‐healing properties of all FET components are reported. The device has repeatable intrinsic and autonomic self‐healing ability, namely without use of any external trigger, enabling the restoration of its electrical and mechanical properties, both after microscale damage or complete cut of the device—for example by a scissor. The device can be repeatedly stretched for >200 cycles of up to 50% strain without a significant loss in its electrical properties. The device is applicable in the form of a ≈3 µm thick freestanding skin tattoo and has multifunctional sensing properties, such as detection of temperature and humidity. With this unprecedented biomimetic transistor, highly sustainable and reliable soft electronic applications can be introduced.  相似文献   

16.
High‐performance nanostructured electro‐optical switches and logic gates are highly desirable as essential building blocks in integrated photonics. In contrast to silicon‐based optoelectronic devices, with their inherent indirect optical bandgap, weak light‐modulation mechanism, and sophisticated device configuration, direct‐bandgap‐semiconductor nanostructures with attractive electro‐optical properties are promising candidates for the construction of nanoscale optical switches for on‐chip photonic integrations. However, previously reported semiconductor‐nanostructure optical switches suffer from serious drawbacks such as high drive voltage, limited operation spectral range, and low modulation depth. High‐efficiency electro‐optical switches based on single CdS nanobelts with low drive voltage, ultra‐high on/off ratio, and broad operation wavelength range, properties resulting from unique electric‐field‐dependent phonon‐assisted optical transitions, are demonstrated. Furthermore, functional NOT, NOR, and NAND optical logic gates are demonstrated based on these switches. These switches and optical logic gates represent an important step toward integrated photonic circuits.  相似文献   

17.
2D van der Waals (vdWs) heterostructures exhibit intriguing optoelectronic properties in photodetectors, solar cells, and light‐emitting diodes. In addition, these materials have the potential to be further extended to optical memories with promising broadband applications for image sensing, logic gates, and synaptic devices for neuromorphic computing. In particular, high programming voltage, high off‐power consumption, and circuital complexity in integration are primary concerns in the development of three‐terminal optical memory devices. This study describes a multilevel nonvolatile optical memory device with a two‐terminal floating‐gate field‐effect transistor with a MoS2/hexagonal boron nitride/graphene heterostructure. The device exhibits an extremely low off‐current of ≈10?14 A and high optical switching on/off current ratio of over ≈106, allowing 18 distinct current levels corresponding to more than four‐bit information storage. Furthermore, it demonstrates an extended endurance of over ≈104 program–erase cycles and a long retention time exceeding 3.6 × 104 s with a low programming voltage of ?10 V. This device paves the way for miniaturization and high‐density integration of future optical memories with vdWs heterostructures.  相似文献   

18.
Due to the so‐called energy‐gap law and aggregation quenching, the efficiency of organic light‐emitting diodes (OLEDs) emitting above 800 nm is significantly lower than that of visible ones. Successful exploitation of triplet emission in phosphorescent materials containing heavy metals has been reported, with OLEDs achieving remarkable external quantum efficiencies (EQEs) up to 3.8% (peak wavelength > 800 nm). For OLEDs incorporating fluorescent materials free from heavy or toxic metals, however, we are not aware of any report of EQEs over 1% (again for emission peaking at wavelengths > 800 nm), even for devices leveraging thermally activated delayed fluorescence (TADF). Here, the development of polymer light‐emitting diodes (PLEDs) peaking at 840 nm and exhibiting unprecedented EQEs (in excess of 1.15%) and turn‐on voltages as low as 1.7 V is reported. These incorporate a novel triazolobenzothiadiazole‐based emitter and a novel indacenodithiophene‐based transport polymer matrix, affording excellent spectral and transport properties. To the best of knowledge, such values are the best ever reported for electroluminescence at 840 nm with a purely organic and solution‐processed active layer, not leveraging triplet‐assisted emission.  相似文献   

19.
With unusual electromagnetic radiation properties and great application potentials, optical toroidal moments have received increasing interest in recent years. 3D metamaterials composed of split ring resonators with specific orientations in micro‐/nanoscale are a perfect choice for toroidal moment realization in optical frequency considering the excellent magnetic confinement and quality factor, which, unfortunately, are currently beyond the reach of existing micro‐/nanofabrication techniques. Here, a 3D toroidal metamaterial operating in mid‐infrared region constructed by metal patterns and dielectric frameworks is designed, by which high‐quality‐factor toroidal resonance is observed experimentally. The toroidal dipole excitation is confirmed numerically and further demonstrated by phase analysis. Furthermore, the far‐field radiation intensity of the excited toroidal dipoles can be adjusted to be predominant among other multipoles by just tuning the incident angle. The related processing method expands the capability of focused ion beam folding technologies greatly, especially in 3D metamaterial fabrication, showing great flexibility and nanoscale controllability on structure size, position, and orientation.  相似文献   

20.
The mode volume and Purcell factor are two important parameters to assess the performance of optical nanocavities. Achieving small mode volumes and high Purcell factors for nanocavity structures while simplifying their fabrication has been a major task to realize high‐performance and large‐scale photonic devices and systems. Different optical resonators based on nanoparticle‐on‐mirror (NPoM) structures are systematically analyzed, which are easy to fabricate and flexible to use. Direct comparison of these optical resonators is made through finite‐difference time‐domain (FDTD) simulations. The achievement of ultrasmall mode volumes below 10?7 based on the NPoM structure through FDTD simulations is demonstrated by rationally selecting the structural parameters. Such NPoM structures provide a decent Purcell factor on the order of 107, which can effectively enhance spontaneous emission and facilitate a number of photonic applications. The simulation results are confirmed by dark field scattering and second‐harmonic generation measurements. This work is scientifically important and offers practical guidelines for the design of optical resonators for state‐of‐the‐art optical and photonic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号