首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用光荧光和时间分辨光谱技术研究了MEB生长立方In  相似文献   

2.
Atomically thin 2D layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, the fabrication of ReS2 field‐effect transistors is reported via the encapsulation of ReS2 nanosheets in a high‐κ Al2O3 dielectric environment. Low‐temperature transport measurements allow to observe a direct metal‐to‐insulator transition originating from strong electron–electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate‐tunable photoresponsivity up to 16.14 A W?1 and external quantum efficiency reaching 3168%, showing a competitive device performance to those reported in graphene, MoSe2, GaS, and GaSe‐based photodetectors. This study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.  相似文献   

3.
Time‐resolved optical spectroscopy is used to investigate exciton‐charge annihilation reactions in blended films of organic semiconductors. In donor–acceptor blends where charges are photogenerated via excitons, pulsed optical excitation can deliver a sufficient density of temporally overlapping excitons and charges for them to interact. Transient absorption spectroscopy measurements demonstrate clear signatures of exciton‐charge annihilation reactions at excitation densities of ≈1018 cm?3. The strength of exciton‐charge annihilation is consistent with a resonant energy transfer mechanism between fluorescent excitons and resonantly absorbing charges, which is shown to generally be strong in organic semiconductors. The extent of exciton‐charge annihilation is very sensitive not only to fluence but also to blend morphology, becoming notably strong in donor–acceptor blends with nanomorphologies optimized for photovoltaic operation. The results highlight both the value of transient optical spectroscopy to interrogate exciton‐charge annihilation reactions and the need to recognize and account for annihilation reactions in other transient optical investigations of organic semiconductors.  相似文献   

4.
Experimentally observed, stable trions with large binding energy (≈25 meV) in atomically thin monolayer 2D transition metal dichalcogenides MX2 (M = Mo, W, X = S, Se, and Te) with an isotropic crystal structure have been extensively studied. In contrast, the characteristics of trions in atomically thin 2D materials with an anisotropic crystal structure are not completely understood. Low‐temperature photoluminescence (PL) spectroscopy in few‐layer ReS2 with an anisotropic crystal structure by applying a gate voltage is described. A new PL peak that emerges below the lower‐energy side of neutral excitons obtained by tuning the gate voltages is attributed to emission from negative trions. Furthermore, the trion binding energy that is strongly dependent on the layer thickness reaches a large value of ≈60 meV in 1L–ReS2, which is ≈2 times larger than that in other isotropic 2D materials (MX2). The enhancement of the binding energy reflects the quasi‐1D nature of the trions in anisotropic atomically thin ReS2. These experimental observations will promote a better understanding of the optical response and applications in new categories of the anisotropic atomically thin 2D materials with a quasi‐1D nature.  相似文献   

5.
2D perovskite materials have recently reattracted intense research interest for applications in photovoltaics and optoelectronics. As a consequence of the dielectric and quantum confinement effect, they show strongly bound and stable excitons at room temperature. Here, the band‐edge exciton fine structure and in particular its exciton and biexciton dynamics in high quality crystals of (PEA)2PbI4 are investigated. A comparison of bulk and surface exciton lifetimes yields a room temperature surface recombination velocity of 2 × 103 cm s?1 and an intrinsic lifetime of 185 ns. Biexciton emission is evidenced at room temperature, with a binding energy of ≈45 meV and a lifetime of 80 ps. At low temperature, exciton state splitting is observed, which is caused by the electron–hole exchange interaction. Transient photoluminescence resolves the low‐lying dark exciton state, with a bright/dark splitting energy estimated to be 10 meV. This work contributes to the understanding of the complex scenario of the elementary photoexcitations in 2D perovskites.  相似文献   

6.
The performance of polymer light emitting diodes (PLEDs) degrades due to exciton quenching at the interface with charge injection layers and electrodes. We investigate the photo-physics of singlet excitons in Poly (9, 9-dioctylfluorene-alt-benzothiadiazole) (F8BT) conjugated polymer interfaced with various commonly used hole and electron injection layers. Absolute, steady-state and transient photoluminescence (PL) studies are carried out on pristine F8BT film and films with injection layer/F8BT to understand the role of injection layers on exciton quenching. Exciton quenching by the charge injection layers is treated by accounting for both exciton diffusion and the non-radiative transfer of energy to the charge injection layer. The non-radiative transfer of energy is modelled using dipole-dipole interaction theory coupled with diffusion of excitons, from which we obtain the exciton capture radius (x0) in the range of 1–7 nm. We also correlate x0 with PL decay time (τ) using the relation τ α 1/x03. The steady-state PL yield for each case also shows correlation with the PL decay lifetime. This study provides interesting insight on the selection criterion for injection layer to be used in PLEDs for minimizing optical losses while preserving the electronic injection properties.  相似文献   

7.
The 2D semiconductor MoS2 in its mono‐ and few‐layer form is expected to have a significant exciton binding energy of several 100 meV, suggesting excitons as the primary photoexcited species. Nevertheless, even single layers show a strong photovoltaic effect and work as the active material in high sensitivity photodetectors, thus indicating efficient charge carrier photogeneration. Here, modulation spectroscopy in the sub‐ps and ms time scales is used to study the photoexcitation dynamics in few‐layer MoS2. The results suggest that the primary photoexcitations are excitons that efficiently dissociate into charges with a characteristic time of 700 fs. Based on these findings, simple suggestions for the design of efficient MoS2 photovoltaic and photodetector devices are made.  相似文献   

8.
Intraband relaxation in all‐inorganic cesium lead tribromide (CsPbBr3) and hybrid organic–inorganic formamidinium lead tribromide (FAPbBr3) nanocrystals is experimentally investigated for a range of particle sizes, excitation energies, sample temperatures, and excitation fluences. Hot carriers in CsPbBr3 nanocrystals consistently exhibit slower cooling than FAPbBr3 nanocrystals in the single electron–hole pair per nanocrystal regime. In both compositions, long‐lived hot carriers (>3 ps) are only observed at excitation densities corresponding to production of multiple electron–hole pairs per nanocrystal—and concomitant Auger recombination. These presented results are distinct from previous reports in bulk hybrid perovskite materials that convey persistent hot carriers at low excitation fluences. Time‐resolved photoluminescence confirms the rapid cooling of carriers in the low‐fluence (single electron–hole pair per nanocrystal) regime. Intraband relaxation processes, as a function of excitation energy, size, and temperature are broadly consistent with other nanocrystalline semiconductor materials.  相似文献   

9.
Singlet–singlet annihilation is studied in polyfluorene (PFO) films containing different fractions of β‐phase chains using time‐resolved fluorescence. On a timescale of >15 ps after excitation, the results are fitted well by a time‐independent annihilation rate, which indicates that annihilation is controlled by 3D exciton diffusion. A time‐dependent annihilation rate is observed during the first 15 ps in the glassy phase and in the β‐phase rich films, which can be explained by the slowdown of exciton diffusion after excitons reach low‐energy sites. The annihilation rate in the mixed‐phase films increases with increasing fraction of β‐phase present, indicating enhanced exciton diffusion. The observed trend agrees well with a model of fully dispersedβ‐phase chromophores in the surrounding glassy phase with the exciton diffusion described using the line‐dipole approximation for an exciton wavefunction extending over 2.5 nm. The results indicate that glassy andβ‐phase chromophores are intimately mixed rather than clustered or phase‐separated.  相似文献   

10.
Transition metal dichalcogenides layered nano-crystals are emerging as promising candidates for next-generation optoelectronic and quantum devices. In such systems, the interaction between excitonic states and atomic vibrations is crucial for many fundamental properties, such as carrier mobilities, quantum coherence loss, and heat dissipation. In particular, to fully exploit their valley-selective excitations, one has to understand the many-body exciton physics of zone-edge states. So far, theoretical and experimental studies have mainly focused on the exciton–phonon dynamics in high-energy direct excitons involving zone-center phonons. Here, ultrafast electron diffraction and ab initio calculations are used to investigate the many-body structural dynamics following nearly- resonant excitation of low-energy indirect excitons in MoS2. By exploiting the large momentum carried by scattered electrons, the excitation of in-plane K- and Q- phonon modes are identified with 𝑬 symmetry as key for the stabilization of indirect excitons generated via near-infrared light at 1.55 eV, and light is shed on the role of phonon anharmonicity and the ensuing structural evolution of the MoS2 crystal lattice. The results highlight the strong selectivity of phononic excitations directly associated with the specific indirect- exciton nature of the wavelength-dependent electronic transitions triggered in the system.  相似文献   

11.
Transition metal dichalcogenides van der Waals (vdWs) heterostructures present fascinating optical and electronic phenomena, and bear tremendous significance for electronic and optoelectronic applications. As the significant merits in vdWs heterostructures, the interlayer relaxation of excitons and interlayer coupling at the heterointerface reflect the dynamic behavior of charge transfer and the coupled electronic/structural characteristics, respectively, which may give rise to new physics induced by quantum coupling. In this work, upon tuning the photoluminescence (PL) properties of WSe2/graphene and WSe2/MoS2/graphene heterostructures by virtue of electric field, it is demonstrated that the interlayer relaxation of excitons at the heterointerface in WSe2/graphene, which is even stronger than that in MoS2/graphene and WSe2/MoS2 , plays a dominant role in PL tuning in WSe2/graphene, while the carrier population in WSe2 induced by electric field has a minor contribution. In addition, it is discovered that the interlayer coupling between monolayer WSe2 and graphene is enhanced under high electric field, which breaks the momentum conservation of first order Raman‐allowed phonons in graphene, yielding the enhanced Raman scattering of defects in graphene. The interplay between electric field and vdWs heterostructures may provide versatile approaches to tune the intrinsic electronic and optical properties of the heterostructures.  相似文献   

12.
Different dispersion near the electronic band edge of a semiconductor can have great influence on its transport, thermoelectric, and optical properties. Using first‐principles calculations, it is demonstrated that a new phase of group‐IV monochalcogenides (γ‐MX, M = Ge, Sn; X = S, Se, or Te) can be stabilized in monolayer limit. γ‐MXs are shown to possess a unique band dispersion—that is, camel's back like structure—in the top valence band. The band nesting effect near the camel's back region induces a large excitonic absorbance and significantly different exciton behaviors from other 2D materials. Importantly, the small effective mass and the indirect characteristics of lowest‐energy exciton render it advantageous for the generation of electron–hole liquid state. After careful evaluation of the electron–hole dissociation temperature and the Mott critical density, it is predicted that a high‐temperature exciton gas to electron–hole liquid phase transition can be achieved in these materials with a low excitation power density. The findings open up new opportunities for both the fundamental research on exciton physics and design of excitonic devices based on 2D materials with distinct band dispersion.  相似文献   

13.
The behavior of excitons in van der Waals (vdWs) heterostructures depends on electron–electron interactions and charge transfer at the hetero‐interface. However, what still remains to be unraveled is to which extent the carrier densities of both counterparts and the band alignment in the vdWs heterostructures determine the photoluminescence properties. Here, we systematically study the photoluminescence properties of monolayer MoS2/graphene heterostructures by modulating the carrier densities and contact barrier at the interface via electrochemical gating. It is shown that the PL intensities of excitons can be tuned by more than two orders of magnitude, and a blue‐shift of the exciton peak of up to 40 meV is observed. By extracting the carrier density of MoS2 using an electric potential distribution model, and the Schottky barrier using first‐principle calculations, we find that the controllable carrier density in MoS2 plays a dominant role in the PL tuning at negative gate bias, whereas the interlayer relaxation of excitons induced by the Schottky barrier has a major contribution at positive gate bias. This is further verified by controlling the tunneling barrier and screening field across MoS2 by inserting self‐assembled monolayers (SAMs) at the interface. These findings will benefit to better understand the effect of many‐body interactions and hetero‐interfaces on the optical and optoelectronic properties in vdWs heterostructures.  相似文献   

14.
Semiconductor photocatalysis, a green and sustainable technology, is of great significance for solving environmental pollution and energy shortages. However, the common problems of inefficient light harvesting, rapid recombination of electron–hole pairs, and low surface reactive reaction sites for photocatalysts urgently need to be solved. In this regard, thin‐layered photocatalysts are considered to be one of the most promising candidates for addressing these issues, due to their unique surface and electronic properties. In this review, the various strategies for constructing thin‐layered photocatalysts are summarized, and emphasis is given to approaches for optimizing the photocatalytic performance of the thin‐layered materials, which can be classified into surface engineering and junction construction. In addition, the photocatalytic applications of thin‐layered materials, i.e., water splitting, CO2 reduction, nitrogen fixation, and molecule oxygen activation, are summarized. Finally, based on current achievements in thin‐layered photocatalysts, their future development and challenges are discussed.  相似文献   

15.
The effect of the morphology on charge‐carrier injection into methyl‐substituted ladder‐type poly(para‐phenylene) (Me‐LPPP) thin films deposited on a Au(111) substrate has been studied by scanning‐tunneling‐microscope‐based spectroscopy. We find that the charge‐carrier injection barrier as well as the single‐particle bandgap, Egsp, of the polymer show significant variations at different locations of the sample surface. Normally, we find that the values of Egsp are larger than the optical absorption edge, the energy difference being attributed to the exciton binding energy. In some regions of the sample, however, Egsp appears to be close to or below the optical absorption edge, pointing to the effect of aggregates within the polymer film which act as hole‐trapping centers with a depth of a few 100 meV. Density functional calculations are used to elucidate the dependence of the electronic states on the polymer packing density. Our results show that in this polymer morphological inhomogeneities strongly influence the charge carrier injection and transport properties. This points to a common behavior of materials exhibiting a tendency to form aggregates. In addition, the exciton binding energy of Me‐LPPP is determined to be approx. 0.85 eV. Moreover, the comparison between the charge‐injection energy gap and the photocurrent action spectrum indicates that the photoionization threshold is not directly related to the exciton binding energy.  相似文献   

16.
In principle, the ratio (Φ) of the maximum quantum efficiencies for electroluminescence (EL) to photoluminescence (PL) can be expected to approach unity, if the exciton (bound electron–hole pair) generated from the recombination of injected electrons and holes in OLEDs has a sufficiently weak binding energy. However, seldom are examples of Φ > 25% reported in OLEDs because of the strongly bound excitons for most organic semiconductors in nature. Here, a twisting donor–acceptor triphenylamine‐thiadiazol molecule (TPA‐NZP) exhibits fluorescent emission through a hybridized local and charge‐transfer excited state (HLCT), which is demonstrated from both fluorescent solvatochromic experiment and quantum chemical calculations. The HLCT state possesses two combined and compatible characteristics: a large transition moment from a local excited (LE) state and a weakly bound exciton from a charge transfer (CT) state. The former contributes to a high‐efficiency radiation of fluorescence, while the latter is responsible for the generation of a high fraction of singlet excitons. Using TPA‐NZP as the light‐emitting layer in an OLED, high Φ values of 93% (at low brightness) and 50% (at high brightness) are achieved, reflecting sufficient employment of the excitons in the OLED. Characterization of the EL device shows a saturated deep‐red emission with CIE coordinates of (0.67, 0.32), accompanied by a rather excellent performance with a maximum luminance of 4574 cd m?2 and a maximum external quantum efficiency (ηext) of ~2.8%. The HLCT state is a new way to realize high‐efficiency of EL devices.  相似文献   

17.
Exciton dissociation is a key step for the light energy conversion to electricity in organic photovoltaic (OPV) devices. Here, excitonic dissociation pathways in the high‐performance, low bandgap “in‐chain donor–acceptor” polymer PTB7 by transient optical absorption (TA) spectroscopy in solutions, neat films, and bulk heterojunction (BHJ) PTB7:PC71BM (phenyl‐C71‐butyric acid methyl ester) films are investigated. The dynamics and energetics of the exciton and intra‐/intermolecular charge separated states are characterized. A distinct, dynamic, spectral red‐shift of the polymer cation is observed in the BHJ films in TA spectra following electron transfer from the polymer to PC71BM, which can be attributed to the time evolution of the hole–electron spatial separation after exciton splitting. Effects of film morphology are also investigated and compared to those of conjugated homopolymers. The enhanced charge separation along the PTB7 alternating donor–acceptor backbone is understood by intramolecular charge separation through polarized, delocalized excitons that lower the exciton binding energy. Consequently, ultrafast charge separation and transport along these polymer backbones reduce carrier recombination in these largely amorphous films. This charge separation mechanism explains why higher degrees of PCBM intercalation within BHJ matrices enhances exciton splitting and charge transport, and thus increase OPV performance. This study proposes new guidelines for OPV materials development.  相似文献   

18.
《Microelectronics Journal》1999,30(4-5):367-371
The exciton dynamics in In0.15Ga0.85As/GaAs quantum wells grown on (111)B and (100) GaAs substrates are studied by the time-resolved photoluminescence (PL). We have found that the piezoelectric fields in (111)B samples affect the transient behavior of PL spectra. Compared with the reference (100) samples, we have confirmed that the piezoelectric effect induces slower exciton relaxation in (111)B strained quantum wells.  相似文献   

19.
Gold nanoclusters (Au NCs) stand for a new type of fluorescent nanomaterials with outstanding optical properties due to their discrete electronic energy and direct electron transition. However, relative low quantum yield (QY) of Au NCs in aqueous or solid state has limited their photofunctional applications. To improve the fluorescent performances of Au NCs and find an effective approach for the fabrication of Au NCs‐based films, in this work, Au NCs are localized onto 2D layered double hydroxides (LDHs) nanosheets via a layer‐by‐layer assembly process; the as‐fabricated (Au NCs/LDH)n ultrathin films (UTFs) show an ordered and dense immobilization of Au NCs. The localization and confinement effects imposed by LDH nanosheets induce significantly increased emissive Au(I) units as confirmed by X‐ray photoelectron spectroscopy and periodic density functional theoretical simulation, which further results in promoted QY (from 2.69% to 14.11%) and prolonged fluorescence lifetime (from 1.84 µs to 14.67 µs). Moreover, the ordered (Au NCs/LDH)n UTFs exhibit well‐defined temperature‐dependent photoluminescence (PL) and electrochemiluminescence (ECL) responses. Therefore, this work supplies a facile strategy to achieve the immobilization of Au NCs and obtain Au NCs‐based thin films with high luminescent properties, which have potential applications in PL and ECL temperature sensors.  相似文献   

20.
If a semiconductor with an electronic transition that approximates a two‐level system is placed within an optical cavity, strong coupling can occur between the confined photons and the semiconductor excitons. This coupling can result in the formation of cavity polariton states that are a coherent superposition of light and matter. If the material in the cavity is an organic semiconductor, it has been predicted that interactions between Frenkel excitons, polaritons, and molecular vibrational modes will have a profound role in defining the overall relaxation dynamics of the system. Here, using temperature‐dependent spectroscopy on a microcavity containing a J‐ aggregated cyanine dye, it is shown that a spectrum of localized vibrational modes (identified by Raman scattering) enhances the population of certain polaritonic modes by acting as an energy‐loss channel to the excitons as they undergo scattering. Our work demonstrates that simultaneous control of the optical properties of a cavity and the vibrational structure of a molecular dye could promote the efficient population of k = 0 polariton states, from which lasing and other cooperative phenomena may occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号