首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite their great promise for providing a pathway for very efficient and fast manipulation of magnetization, spin‐orbit torque (SOT) operations are currently energy inefficient due to a low damping‐like SOT efficiency per unit current bias, and/or the very high resistivity of the spin Hall materials. This work reports an advantageous spin Hall material, Pd1?xPtx, which combines a low resistivity with a giant spin Hall effect as evidenced with three independent SOT ferromagnetic detectors. The optimal Pd0.25Pt0.75 alloy has a giant internal spin Hall ratio of >0.60 (damping‐like SOT efficiency of ≈0.26 for all three ferromagnets) and a low resistivity of ≈57.5 µΩ cm at a 4 nm thickness. Moreover, it is found that the Dzyaloshinskii–Moriya interaction (DMI), the key ingredient for the manipulation of chiral spin arrangements (e.g., magnetic skyrmions and chiral domain walls), is considerably strong at the Pd1?xPtx/Fe0.6Co0.2B0.2 interface when compared to that at Ta/Fe0.6Co0.2B0.2 or W/Fe0.6Co0.2B0.2 interfaces and can be tuned by a factor of 5 through control of the interfacial spin‐orbital coupling via the heavy metal composition. This work establishes a very effective spin current generator that combines a notably high energy efficiency with a very strong and tunable DMI for advanced chiral spintronics and spin torque applications.  相似文献   

2.
External manipulation of spin‐orbit torques (SOTs) promises not only energy‐efficient spin‐orbitronic devices but also versatile applications of spin‐based technologies in diverse fields. However, the external electric‐field control, widely used in semiconductor spintronics, is known to be ineffective in conventional metallic spin‐orbitronic devices due to the very short screening length. Here, an alternative approach to control the SOTs by using gases is shown. It is demonstrated that the spin‐torque generation efficiency of a Pd/Ni81Fe19 bilayer can be reversibly manipulated by the absorption and desorption of H2 gas, which appears concomitantly with the change of the electrical resistance. It is found that compared with the change of the Pd resistance induced by the H2 absorption, the change of the spin‐torque generation efficiency is almost an order of magnitude larger. This result provides a new method to externally manipulate the SOTs and paves a way for developing more sensitive hydrogen sensors based on the spin‐orbitronic technology.  相似文献   

3.
Solution‐processing hybrid metal halide perovskites are promising materials for developing flexible thin‐film devices. This work reports the substrate effects on the spin–orbit coupling (SOC) in perovskite films through thermal expansion under thermal annealing. X‐ray diffraction (XRD) measurements show that using a flexible polyethylene naphthalate (PEN) substrate introduces a smaller mechanical strain in perovskite MAPbI3?xClx films, as compared to conventional glass substrates. Interestingly, the linear/circular photoexcitation‐modulated photocurrent studies find that decreasing mechanical strain gives rise to a weaker orbit–orbit interaction toward decreasing the SOC in the MAPbI3?xClx films prepared on flexible PEN substrates relative to rigid glass substrates. Simultaneously, decreasing the mechanical strain causes a reduction in the internal magnetic parameter inside the MAPbI3?xClx films, providing further evidence to show that introducing mechanical strain can affect the SOC in hybrid perovskite films upon using flexible substrates toward developing flexible perovskite thin‐film devices. Furthermore, thermal admittance spectroscopy indicates that the trap states are increased in the perovskite films prepared on flexible PEN substrates as compared to glass substrates. Consequently, PEN and rigid glass substrates lead to shorter and longer photoluminescence lifetimes, respectively. Clearly, these findings provide an insightful understanding on substrate effects on optoelectronic properties in flexible perovskite thin‐film devices.  相似文献   

4.
Multilevel remanence states have potential applications in ultra‐high‐density storage and neuromorphic computing. Continuous tailoring of the multilevel remanence states by spin‐orbit torque (SOT) is reported in perpendicularly magnetized Pt/Co/IrMn heterostructures. Double‐biased hysteresis loops with only one remanence state can be tuned from the positively or negatively single‐biased loops by SOT controlled sign of the exchange‐bias field. The remanence states associated with the heights of the sub‐loops are continually changed by tuning the ratio of the positively and negatively oriented ferromagnetic domains. The multilevel storage cells are demonstrated by reading the remanent Hall resistance through changing the sign and/or the magnitude of current pulse. The synaptic plasticity behaviors for neuromorphic computing are also simulated by varying the remanent Hall resistance under the consecutive current pulses. This work demonstrates that SOT is an effective method to tailor the remanence states in the double‐biased heavy metal/ferromagnetic/antiferromagnetic system. The multilevel‐stable remanence states driven by SOT show potential applications in future multilevel memories and neuromorphic computing devices.  相似文献   

5.
Photonic spin–orbit interactions (SOI) provide a new design paradigm of functional nanomaterials and nanostructures, and have especially accelerated advances in spin–orbit photonics. The berry phase or the geometric phase, a salient property of SOI, plays a vital role in this process. Thus, the characterization of photonic SOI processes together with the Berry phase is highly demanded for studies such as the optical spin‐Hall effect, spin‐to‐vortex conversion, and Rashba effect. Here, a spin‐selective and phase‐resolved near‐field microscopic method is proposed and experimentally demonstrated for real‐time probing and direct visualization of photonic SOI at mesoscale, and a 3D tomographic technique for imaging the spatial evolutions of the optical phases is also properly realized. By analyzing a metallic metasurface as a spin‐to‐vortex conversion platform, the abrupt geometric phase and the spatially evolutional dynamic phases are directly measured and intuitively illustrated. This work provides a powerful tool for the study of spin–orbit phenomena in near‐field optics, and can hold the promise for directly exploring the spin‐dependent surface states in plasmonics and photonic topological insulators.  相似文献   

6.
Antiferromagnetic spintronics actively introduces new principles of magnetic memory, in which the most fundamental spin‐dependent phenomena, i.e., anisotropic magnetoresistance effects, are governed by an antiferromagnet instead of a ferromagnet. A general scenario of the antiferromagnetic anisotropic magnetoresistance effects mainly stems from the magnetocrystalline anisotropy related to spin–orbit coupling. Here magnetic field driven contour rotation of the fourfold anisotropic magnetoresistance in bare antiferromagnetic Sr2IrO4/SrTiO3 (001) thin films hosting a strong spin–orbit coupling induced Jeff = 1/2 Mott state is demonstrated. Concurrently, an intriguing minimal in the magnetoresistance emerges. Through first principles calculations, the bandgap engineering due to rotation of the Ir isospins is revealed to be responsible for these emergent phenomena, different from the traditional scenario where relatively more conductive state is obtained usually when magnetic field is applied along the magnetic easy axis. These findings demonstrate a new efficient route, i.e., via the novel Jeff = 1/2 state, to realize controllable anisotropic magnetoresistance in antiferromagnetic materials.  相似文献   

7.
Ferromagnets with binary states are limited for applications as artificial synapses for neuromorphic computing. Here, it is shown how synaptic plasticity of a perpendicular ferromagnetic layer (FM1) can be obtained when it is interlayer exchange‐coupled by another in‐plane ferromagnetic layer (FM2), where a magnetic field‐free current‐driven multistate magnetization switching of FM1 in the Pt/FM1/Ta/FM2 structure is induced by spin–orbit torque. Current pulses are used to set the perpendicular magnetization state, which acts as the synapse weight, and spintronic implementation of the excitatory/inhibitory postsynaptic potentials and spike timing‐dependent plasticity are demonstrated. This functionality is made possible by the action of the in‐plane interlayer exchange coupling field which leads to broadened, multistate magnetic reversal characteristics. Numerical simulations, combined with investigations of a reference sample with a single perpendicular magnetized Pt/FM1/Ta structure, reveal that the broadening is due to the in‐plane field component tuning the efficiency of the spin–orbit torque to drive domain walls across a landscape of varying pinning potentials. The conventionally binary FM1 inside the Pt/FM1/Ta/FM2 structure with an inherent in‐plane coupling field is therefore tuned into a multistate perpendicular ferromagnet and represents a synaptic emulator for neuromorphic computing, demonstrating a significant pathway toward a combination of spintronics and synaptic electronics.  相似文献   

8.
Motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields, this work aims at magnonics manipulation by the magnetoelectric coupling effect. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3‐0.3PbTiO3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage‐induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin‐lattice coupling effect, i.e., varying exchange stiffness due to voltage‐induced anisotropic lattice changes, has been established to explain experiment results with good agreement. Additionally, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin‐lattice coupling effect provides a platform for realizing energy‐efficient, tunable magnonics devices.  相似文献   

9.
A new scheme dedicated to improving spin‐transport characteristics by applying random disorder as a constructive agent is reported. The approach paves the way for the construction of novel systems with a surprising combination of properties, which are either extremely rare or even entirely absent within the known classes of ordered materials: half‐metals with no net magnetization and magnetic semiconductors. As a real case example for the applicability of the scheme, it is shown that a series of such materials can be derived from the tetragonal Heusler compound Mn3Ga by substituting Mn with a 3d‐transition metal.  相似文献   

10.
The softness and anisotropy of organic semiconductors offer unique properties. Recently, solution‐sheared thin‐films of 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐P) with nonequilibrium single‐crystal domains have shown much higher charge mobilities than unstrained ones (Nature 2011 , 480, 504). However, to achieve efficient and targeted modulation of charge transport in organic semiconductors, a detailed microscopic understanding of the structure–property relationship is needed. In this work, motivated by the experimental studies, the relationship between lattice strain, molecular packing, and charge carrier mobility of TIPS‐P crystals is elucidated. By employing a multiscale theoretical approach combining nonequilibrium molecular dynamics, first‐principles calculations, and kinetic Monte Carlo simulations using charge‐transfer rates based on the tunneling enabled hopping model, charge‐transport properties of TIPS‐P under various lattice strains are investigated. Shear‐strained TIPS‐P indeed exhibits one‐dimensional charge transport, which agrees with the experiments. Furthermore, either shear or tensile strain lead to mobility enhancement, but with strong charge‐transport anisotropy. In addition, a combination of shear and tensile strains could not only enhance mobility, but also decrease anisotropy. By combining the shear and tensile strains, almost isotropic charge transport could be realized in TIPS‐P crystal with the hole mobility improved by at least one order of magnitude. This approach enables a deep understanding of the effect of lattice strain on charge carrier transport properties in organic semiconductors.  相似文献   

11.
After decades of study, BiFeO3 is still the most promising single‐phase multiferroic material due to its large polarization and high operating temperature, drawing much attention. As a typical type‐I multiferroic material, the magnetoelectric coupling in BiFeO3 is deemed to be weak due to the different origins of its ferroelectricity and magnetism. Here, the magnetoelectric effect in bulk BiFeO3 is readdressed both theoretically and experimentally. Based on the Dzyaloshinsky–Moriya interaction scenario, the magnetoelectric effect in BiFeO3 is actually strong, with a coupling energy of about 1.25 meV and a magnetism‐coupled parasitic polarization comparable to that of the type‐II multiferroics. However, such strong magnetoelectric coupling also causes the cycloidal spin structure, which inhibits the observation of linear magnetoelectric coupling in bulk BiFeO3. To resolve this contradiction, Sm‐substitution is utilized to suppress the magnetoelectric effect and unlocks the weak ferromagnetism. At an optimized composition, such a weak ferromagnetic state can be switched back to the cycloidal state by an electric field, thus realizing electrical control of the magnetism. It has been argued that field‐controlled phase transition is a promising path to colossal magnetoelectric effect. It is of pioneering significance for further investigations down this road.  相似文献   

12.
A novel method of strain‐aligning polymer films is introduced and applied to regioregular poly(3‐hexylthiophene) (P3HT), showing several important features of charge transport. The polymer backbone is shown to align in the direction of applied strain resulting in a large charge‐mobility anisotropy, where the in‐plane mobility increases in the applied strain direction and decreases in the perpendicular direction. In the aligned film, the hole mobility is successfully represented by a two‐dimensional tensor, suggesting that charge transport parallel to the polymer backbone within a P3HT crystal is strongly favored over the other crystallographic directions. Hole mobility parallel to the backbone is shown to be high for a mixture of plane‐on and edge‐on packing configurations, as the strain alignment is found to induce a significant face‐on orientation of the originally highly edge‐on oriented crystalline regions of the film. This alignment approach can achieve an optical dichroic ratio of 4.8 and a charge‐mobility anisotropy of 9, providing a simple and effective method to investigate charge‐transport mechanisms in polymer semiconductors.  相似文献   

13.
First‐order phase transitions, where one phase replaces another by virtue of a simple crossing of free energies, are best known between solids, liquids, and vapors, but they also occur in a wide range of other contexts, including even elemental magnets. The key challenges are to establish whether a phase transition is indeed first order, and then to determine how the new phase emerges because this will determine thermodynamic and electronic properties. Here it is shown that both challenges are met for the spin reorientation transition in the topological metallic ferromagnet Fe3Sn2. The magnetometry and variable temperature magnetic force microscopy experiments reveal that, analogous to the liquid–gas transition in the temperature–pressure plane, this transition is centered on a first‐order line terminating in a critical end point in the field‐temperature plane. The nucleation and growth associated with the transition is directly imaged, indicating that the new phase emerges at the most convoluted magnetic domain walls for the high temperature phase and then moves to self‐organize at the domain centers of the high temperature phase. The dense domain patterns and phase coexistence imply a complex inhomogenous electronic structure, which can yield anomalous contributions to the electrical conductivity.  相似文献   

14.
An electronegative conjugated compound composed of a newly designed carbonyl‐bridged bithiazole unit and trifluoroacetyl terminal groups is synthesized as a candidate for air‐stable n‐type organic field‐effect transistor (OFET) materials. Cyclic voltammetry measurements reveal that carbonyl‐bridging contributes both to lowering the lowest unoccupied molecular orbital energy level and to stabilizing the anionic species. X‐ray crystallographic analysis of the compound shows a planar molecular geometry and a dense molecular packing, which is advantageous to electron transport. Through these appropriate electrochemical properties and structures for n‐type semiconductor materials, OFET devices based on this compound show electron mobilities as high as 0.06 cm2 V?1 s?1 with on/off ratios of 106 and threshold voltages of 20 V under vacuum conditions. Furthermore, these devices show the same order of electron mobility under ambient conditions.  相似文献   

15.
Amorphous and polycrystalline Sn‐doped IrO2 thin films, Ir1‐xSnxO2, are grown for the first time. Their electrical response and strength of the spin–orbit coupling are studied in order to better understand and tailor its performance as spin current detector material. These experiments prove that the resistivity of IrO2 can be tuned over several orders of magnitude by controlling the doping content in both the amorphous and the polycrystalline state. In addition, growing amorphous samples increase the resistivity, thus improving the spin current to charge current conversion. As far as the spin–orbit coupling is concerned, the system not only remains in a strong spin–orbit coupling regime but it seems to undergo a slight enhancement in the amorphous state as well as in the Sn‐doped samples.  相似文献   

16.
Multiferroic heterostructures composed of complex oxide thin films and ferroelectric single crystals have aroused considerable interest due to the electrically switchable strain and charge elements of oxide films by the polarization reversal of ferroelectrics. Previous studies have demonstrated that the electric‐field‐control of physical properties of such heterostructures is exclusively due to the ferroelectric domain switching‐induced lattice strain effects. Here, the first successful integration of the hexagonal ZnO:Mn dilute magnetic semiconductor thin films with high performance (111)‐oriented perovskite Pb(Mg1/3Nb2/3)O3‐PbTiO3 (PMN‐PT) single crystals is reported, and unprecedented charge‐mediated electric‐field control of both electronic transport and ferromagnetism at room temperature for PMN‐PT single crystal‐based oxide heterostructures is realized. A significant carrier concentration‐tunability of resistance and magnetization by ≈400% and ≈257% is achieved at room temperature. The electric‐field controlled bistable resistance and ferromagnetism switching at room temperature via interfacial electric charge presents a potential strategy for designing prototype devices for information storage. The results also disclose that the relative importance of the strain effect and interfacial charge effect in oxide film/ferroelectric crystal heterostructures can be tuned by appropriately adjusting the charge carrier density of oxide films.  相似文献   

17.
Polymeric semiconductors have demonstrated great potential in the mass production of low‐cost, lightweight, flexible, and stretchable electronic devices, making them very attractive for commercial applications. Over the past three decades, remarkable progress has been made in donor–acceptor (D–A) polymer‐based field‐effect transistors, with their charge‐carrier mobility exceeding 10 cm2 V?1 s?1. Numerous molecular designs of D–A polymers have emerged and evolved along with progress in understanding the charge transport physics behind their high mobility. In this review, the current understanding of charge transport in polymeric semiconductors is covered along with significant features observed in high‐mobility D–A polymers, with a particular focus on polymeric microstructures. Subsequently, emerging molecular designs with further prospective improvements in charge‐carrier mobility are described. Moreover, the current issues and outlook for future generations of polymeric semiconductors are discussed.  相似文献   

18.
19.
Organic‐inorganic hybrid perovskite (CH3NH3PbX3, X = Cl, Br or I) quantum dots (QDs) have shown superior optoelectronic properties and have been regarded as a most ideal material for next‐generation optoelectronic devices, particularly for QDs‐based light‐emitting diodes (QLEDs). However, there are only a few reports on CH3NH3PbX3 QLEDs and the reported performance is still very poor, primarily due to the difficulties in the fabrication of high‐quality compact QDs thin films. In this work, an electric‐field‐assisted strategy is developed for efficient fabrication of uniform CH3NH3PbBr3 QDs thin films with high photoluminescence quantum yields (PLQY, 80%–90%) from dilute CH3NH3PbBr3 QDs suspensions (≈0.1 mg mL‐1) within 5 mins. Benefited from the high‐quality CH3NH3PbBr3 QDs thin films, the corresponding QLEDs deliver a highly bright green emission with maximum luminances of 12450 cd m2. Furthermore, a current efficiency of 12.7 cd A‐1, a power efficiency of 9.7 lm W‐1, and an external quantum efficiency (EQE) of 3.2% were acheived by enhancing the hole injection. This performance represents the best results for CH3NH3PbBr3 QDs‐based QLEDs reported to date. These results indicate an important progress in the fabrication of high‐performance CH3NH3PbX3 QLEDs and demonstrate their huge potential for next‐generation displays and lighting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号