首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hematite (α‐Fe2O3) as a photoanode material for photoelectrochemical (PEC) water splitting suffers from the two problems of poor charge separation and slow water oxidation kinetics. The construction of p–n junction nanostructures by coupling of highly stable Co3O4 in aqueous alkaline environment to Fe2O3 nanorod arrays with delicate energy band positions may be a challenging strategy for efficient PEC water oxidation. It is demonstrated that the designed p‐Co3O4/n‐Fe2O3 junction exhibits superior photocurrent density, fast water oxidation kinetics, and remarkable charge injection and bulk separation efficiency (ηinj and ηsep), attributing to the high catalytic behavior of Co3O4 for the oxygen evolution reaction as well as the induced interfacial electric field that facilitates separation and transportation of charge carriers. In addition, a cocatalyst of cobalt phosphate (Co‐Pi) is introduced, which brings the PEC performance to a high level. The resultant Co‐Pi/Co3O4/Ti:Fe2O3 photoanode shows a photocurrent density of 2.7 mA cm?2 at 1.23 VRHE (V vs reversible hydrogen electrode), 125% higher than that of the Ti:Fe2O3 photoanode. The optimized ηinj and ηsep of 91.6 and 23.0% at 1.23 VRHE are achieved on Co‐Pi/Co3O4/Ti:Fe2O3, respectively, corresponding to the 70 and 43% improvements compared with those of Ti:Fe2O3. Furthermore, Co‐Pi/Co3O4/Ti:Fe2O3 shows a low onset potential of 0.64 VRHE and long‐time PEC stability.  相似文献   

2.
Electrode surface wettability is critically important for heterogeneous electrochemical reactions taking place in aqueous and nonaqueous media. Herein, electrochemically inert g‐C3N4 (GCN) is successfully demonstrated to significantly enhance water oxidation by constructing a superhydrophilic catalyst surface and promoting substantial exposure of active sites. As a proof‐of‐concept application, superhydrophilic GCN/Ni(OH)2 (GCNN) hybrids with monodispersed Ni(OH)2 nanoplates strongly anchored on GCN are synthesized for enhanced water oxidation catalysis. Owing to the superhydrophilicity of functionalized GCN, the surface wettability of GCNN (contact angle 0°) is substantially improved as compared with bare Ni(OH)2 (contact angle 21°). Besides, GCN nanosheets can effectively suppress Ni(OH)2 aggregation to help expose more active sites. Benefiting from the well‐defined catalyst surface, the optimal GCNN hybrid shows significantly enhanced electrochemical performance over bare Ni(OH)2 nanosheets, although GCN is electrochemically inert. In addition, similar catalytic performance promotion resulting from wettability improvement induced by incorporation of hydrophilic GCN is also successfully demonstrated on Co(OH)2. The present results demonstrate that, in addition to developing new catalysts, building efficient surface chemistry is also vital to achieve extraordinary water oxidation performance.  相似文献   

3.
Efficient charge separation and transport as well as high light absorption are key factors that determine the efficiency of photoelectrochemical (PEC) water splitting devices. Here, a PEC device consisting of a hematite nanoporous film deposited on Pt nanopillars, followed by the decoration with an Fe2TiO5 passivation layer, is designed and fabricated. This structure can largely improve the light absorption in the composite materials, and significantly enhance the water oxidation performance of hematite photoanodes. The Fe2TiO5 thin shell and Pt underlayer significantly improve the interfacial charge transfer while minimizing the hole‐migration length in Fe2O3 photoanodes, leading to a drastically increased photocurrent density. Specially, the Fe2TiO5/Fe2O3/Pt photoanode yields an excellent photoresponse for PEC water splitting reactions with 1.0 and 2.4 mA cm?2 obtained at 1.23 and 1.6 VRHE under AM 1.5G illumination in 1 m KOH. The resulting photocurrents are 2.5 times enhanced compared to a pristine Fe2O3 photoanode of the same geometry. These results demonstrate a synergistic charge transfer effect of Fe2TiO5 and Pt layers on hematite for the improvement of PEC water oxidation.  相似文献   

4.
Novel composites composed of α‐Fe2O3 tetrakaidecahedrons and graphene oxide have been easily fabricated and demonstrated to be efficient photoelectrodes for photoelectrochemical water splitting reaction with superior photocurrent response. α‐Fe2O3 tetrakaidecahedrons are facilely synthesized in a green manner without any organic additives and then modified with graphene oxide. The morphological and structural properties of α‐Fe2O3/graphene composite are intensively investigated by several means, such as X‐ray diffraction, field‐emission scanning electron microscope, transmission electron microscope, X‐ray photoelectron spectroscopy, Fourier Transform infrared spectroscopy, and Raman spectroscopy. The tetrakaidecahedronal hematite particles have been indicated to be successfully coupled with graphene oxide. Systematical photoelectrochemical and impedance spectroscopy measurements have been carried out to investigate the favorable performance of α‐Fe2O3/graphene composites, which are found to be effective photoanodes with rapid, steady, and reproducible feature. The coupling of graphene with α‐Fe2O3 particles has greatly enhanced the photoelectrochemical performance, resulting in higher photocurrent and lower onset potential than that of pure α‐Fe2O3. This investigation has provided a feasible method to synthesize α‐Fe2O3 tetrakaidecahedron and fabricate an efficient α‐Fe2O3/graphene photoelectrode for photoelectrochemical water oxidation, suggesting a promising route to design noble metal free semiconductor/graphene photocatalysts.  相似文献   

5.
In this work, a water splitting photoanode composed of a BiVO4 thin film surface modified by the deposition of a rhodium (Rh)‐doped SrTiO3 perovskite is fabricated, and the Rh‐doped SrTiO3 outer layer exhibits special photoelectrochemical (PEC) oxygen evolution co‐catalytic activity. Controlled intensity modulated photo‐current spectroscopy, electrochemical impedance spectroscopy, and other electrochemical results indicate that the Rh on the perovskite provide an oxidation active site during the PEC water oxidation process by reducing the reaction energy barrier for water oxidation. Theoretical calculations indicate that the water oxidation reaction is more likely to occur on the (110) crystal plane of Rh‐SrTiO3 because the oxygen evolution reaction overpotential on the (110) crystal plane is reduced significantly. Therefore, the obtained BiVO4/Rh5%‐SrTiO3 photoanode exhibits an optimized PEC performance. In particular, it facilitates the saturation of the photocurrent density. Thus, the presence of doped Rh in SrTiO3 can reduce the amount of noble metals required while achieving excellent and stable oxygen evolution properties.  相似文献   

6.
Finding efficient electrocatalysts for oxygen evolution reaction (OER) that can be effectively integrated with semiconductors is significantly challenging for solar‐driven photo‐electrochemical (PEC) water splitting. Herein, amorphous cobalt–iron hydroxide (CoFe? H) nanosheets are synthesized by facile electrodeposition as an efficient catalyst for both electrochemical and PEC water oxidation. As a result of the high electrochemically active surface area and the amorphous nature, the optimized amorphous CoFe? H nanosheets exhibit superior OER catalytic activity in alkaline environment with a small overpotential (280 mV) to achieve significant oxygen evolution (j = 10 mA cm?2) and a low Tafel slope (28 mV dec?1). Furthermore, CoFe? H nanosheets are simply integrated with BiVO4 semiconductor to construct CoFe? H/BiVO4 photoanodes that exhibit a significantly enhanced photocurrent density of 2.48 mA cm?2 (at 1.23 V vs reversible hydrogen electrode (RHE)) and a much lower onset potential of 0.23 V (vs RHE) for PEC‐OER. Careful electrochemical and optical studies reveal that the improved OER kinetics and high‐quality interface at the CoFe? H/BiVO4 junction, as well as the excellent optical transparency of CoFe? H nanosheets, contribute to the high PEC performance. This study establishes amorphous CoFe? H nanosheets as a highly competitive candidate for electrochemical and PEC water oxidation and provides general guidelines for designing efficient PEC systems.  相似文献   

7.
There has been significant progress in the field of semiconductor photocatalysis, but it is still a challenge to fabricate low‐cost and high‐activity photocatalysts because of safety issues and non‐secondary pollution to the environment. Here, 2D hexagonal nanoplates of α‐Fe2O3/graphene composites with relatively good distribution are synthesized for the first time using a simple, one‐step, template‐free, hydrothermal method that achieves the effective reduction of the graphene oxide (GO) to graphene and intimate and large contact interfaces of the α‐Fe2O3 nanoplates with graphene. The α‐Fe2O3/graphene composites showed significantly enhancement in the photocatalytic activity compared with the pure α‐Fe2O3 nanoplates. At an optimal ratio of 5 wt% graphene, 98% of Rhodamine (RhB) is decomposed with 20 min of irradiation, and the rate constant of the composites is almost four times higher than that of pure α‐Fe2O3 nanoplates. The decisive factors in improving the photocatalytic performance are the intimate and large contact interfaces between 2D hexagonal α‐Fe2O3 nanoplates and graphene, in addition to the high electron withdrawing/storing ability and the highconductivity of reduced graphene oxide (RGO) formed during the hydrothermal reaction. The effective charge transfer from α‐Fe2O3 nanoplates to graphene sheets is demonstrated by the significant weakening of photoluminescence in α‐Fe2O3/graphene composites.  相似文献   

8.
Rational design of non‐noble metal catalysts with robust and durable electrocatalytic activity for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is extremely important for renewable energy conversion and storage, regenerative fuel cells, rechargeable metal–air batteries, water splitting etc. In this work, a unique hybrid material consisting of Fe3C and Co nanoparticles encapsulated in a nanoporous hierarchical structure of N‐doped carbon (Fe3C‐Co/NC) is fabricated for the first time via a facile template‐removal method. Such an ingenious structure shows great features: the marriage of 1D carbon nanotubes and 2D carbon nanosheets, abundant active sites resulting from various active species of Fe3C, Co, and NC, mesoporous carbon structure, and intimate integration among Fe3C, Co, and NC. As a multifunctional electrocatalyst, the Fe3C‐Co/NC hybrid exhibits excellent performance for ORR, OER, and HER, outperforming most of reported triple functional electrocatalysts. This study provides a new perspective to construct multifunctional catalysts with well‐designed structure and superior performance for clean energy conversion technologies.  相似文献   

9.
Platinum‐based catalysts are critical to several chemical processes, but their efficiency is not satisfying enough in some cases, because only the surface active‐site atoms participate in the reaction. Henceforth, catalysts with single‐atom dispersions are highly desirable to maximize their mass efficiency, but fabricating these structures using a controllable method is still challenging. Most previous studies have focused on crystalline materials. However, amorphous materials may have enhanced performance due to their distorted and isotropic nature with numerous defects. Here reported is the facile synthesis of an atomically dispersed catalyst that consists of single Pt atoms and amorphous Fe2O3 nanosheets. Rational control can regulate the morphology from single atom clusters to sub‐nanoparticles. Density functional theory calculations show the synergistic effect resulted from the strong binding and stabilization of single Pt atoms with the strong metal‐support interaction between the in situ locally anchored Pt atoms and Fe2O3 lead to a weak CO adsorption. Moreover, the distorted amorphous Fe2O3 with O vacancies is beneficial for the activation of O2, which further facilitates CO oxidation on nearby Pt sites or interface sites between Pt and Fe2O3, resulting in the extremely high performance for CO oxidation of the atomic catalyst.  相似文献   

10.
The effect of space accessible to electrolyte ions on the electrochemical activity is studied for a system of transition‐metal hydroxide‐based pseudocapacitors. Layered α‐Co(OH)2 with various intercalated anions is used as a model material. Three types of layered α‐Co(OH)2 with intercalated anions of dodecyl sulfate, benzoate, or nitrate, are prepared by a simple reflux and an anion‐exchange process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations and X‐ray diffraction (XRD) data show the formation of layered α‐Co(OH)2 nanocones with interlayer spacing between adjacent Co(OH)2 single sheets of 1.6, 0.7, and 0.09 nm, corresponding to the anions as listed above. Electrochemical characterization reveals that interlayer space has a great effect on the electrochemical activity of α‐Co(OH)2 nanocones as an electrode material. For the interlayer spacing of 1.6 nm, in the case of dodecyl sulfate‐intercalated α‐Co(OH)2, the Faradaic reaction takes place more adequately than for benzoate‐ and nitrate‐intercalated α‐Co(OH)2. As a result, a higher specific capacitance and better cycling stability is obtained for the dodecyl sulfate‐intercalated α‐Co(OH)2. The electrochemical activity obviously reduces when the interlayer space decreases to 0.7 nm. Our results suggest the importance of rational designing the interlayer space of layered transition metal hydroxides for high‐performance pseudocapacitors.  相似文献   

11.
The n‐type semiconducting spinel zinc ferrite (ZnFe2O4) is used as a photoabsorber material for light‐driven water‐splitting. It is prepared for the first time by atomic layer deposition. Using the resulting well‐defined thin films as a model system, the performance of ZnFe2O4 in photoelectrochemical water oxidation is characterized. Compared to benchmark α‐Fe2O3 (hematite) films, ZnFe2O4 thin films achieve a lower photocurrent at the reversible potential. However, the oxidation onset potential of ZnFe2O4 is 200 mV more cathodic, allowing the water‐splitting reaction to proceed at a lower external bias and resulting in a maximum applied‐bias power efficiency (ABPE) similar to that of Fe2O3. The kinetics of the water oxidation reaction are examined by intensity‐modulated photocurrent spectroscopy. The data indicate a considerably higher charge transfer efficiency of ZnFe2O4 at potentials between 0.8 and 1.3 V versus the reversible hydrogen electrode, attributable to significantly slower surface charge recombination. Finally, nanostructured ZnFe2O4 photoanodes employing a macroporous antimony‐doped tin oxide current collector reach a five times higher photocurrent than the flat films. The maximum ABPE of these host–guest photoanodes is similarly increased.  相似文献   

12.
A Z‐scheme heterojunction with high electron–hole pairs separation efficacy and enhanced redox potentials exhibits tremendous potential in photonic theranostics, but still remains unexplored and challenging. Herein, novel 2D thermally oxidized pyrite nanosheets (TOPY NSs) with FeS2 core and Fe2O3 shell are fabricated combining ball grinding and two‐step probe sonication assisted liquid exfoliation under different solution and air environments. The Fe2O3 shell and Fe3+/Fe2+ inside TOPY NSs can both damage the tumor microenvironment through glutathione consumption and O2 production, and produce ·OH by Fenton reaction. More interestingly, a direct Z‐scheme heterojunction based on FeS2 core and Fe2O3 shell is constructed, in which the electrons in the conduction band (CB) of Fe2O3 are recombined with the holes in the valence band (VB) of FeS2, leaving stronger reduction/oxidation potentials in the CB of FeS2 and the VB of Fe2O3. Under irradiation of a 650 nm laser, the generation of ·O2? from O2 and ·OH from OH? on the CB of FeS2 and VB of Fe2O3, respectively, is largely enhanced. Furthermore, the NSs can be triggered by an 808 nm laser to generate local hyperthermia for photothermal therapy. Moreover, the fluorescent, photoacoustic, and photothermal imaging capabilities of the NSs allow multimodal imaging‐guided cancer treatment.  相似文献   

13.
The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)2@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)2, the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm?2. Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm?2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption.  相似文献   

14.
Interfacial oxidation–reduction reaction is herein developed to prepare hollow binary oxide nanostructures. Ce–Mn nanotubes are fabricated by treating Ce(OH)CO3 templates with KMnO4 aqueous solution, where MnO4? is reduced to manganese oxide and the Ce3+ in Ce(OH)CO3 is simultaneously oxidized to form cerium oxide, followed by selective wash with HNO3. The resulting Ce–Mn binary oxide nanotubes exhibit high catalytic activity towards CO oxidation and show significant adsorption capacity of Congo red. Moreover, guided by the same interfacial‐reaction principle, binary oxide hollow nanostructures with different shapes and compositions are synthesized. Specifically, hollow Ce–Mn binary oxide cubes, and Co‐Mn and Ce‐Fe binary oxide hollow nanostructures are achieved by changing the shape of the Ce(OH)CO3 templates from rods to cubes, by changing the tempates from Ce(OH)CO3 nanorods to Co(CO3)0.35Cl0.20(OH)1.10 nanowires, and by replacing the oxidant of KMnO4 with another strong one, K2FeO4, respectively. This work is expected to open a new, simple avenue for the general synthesis of hollow binary oxide nanostructures.  相似文献   

15.
Growth of aligned and uniform α‐Fe2O3 nanowire (NW) arrays has been achieved by a vapor–solid process. The experimental conditions, such as type of substrate, local growth and geometrical environment, gas‐flow rate, and growth temperature, under which the high density α‐Fe2O3 NW arrays can be grown by a vapor–solid route via the tip‐growth mechanism have been systematically investigated. The density of the α‐Fe2O3 NWs can be enhanced by increasing the concentration of Ni atoms inside the alloy substrate. The synthesized temperature can be as low as 400 °C. Fe3O4 NWs can be produced by converting α‐Fe2O3 NWs in a reducing atmosphere at 450 °C. The transformation of phase and structure have been observed by in situ transmission electron microscopy. The magnetic and field‐emission properties of the NWs indicate their potential applications in nanodevices.  相似文献   

16.
Transition metal (Co, Fe, Mn)‐doped In2O3?y mesoporous oxides are synthesized by nanocasting using mesoporous silica as hard templates. 3D ordered mesoporous replicas are obtained after silica removal in the case of the In‐Co and In‐Fe oxide powders. During the conversion of metal nitrates into the target mixed oxides, Co, Fe, and Mn ions enter the lattice of the In2O3 bixbyite phase via isovalent or heterovalent cation substitution, leading to a reduction in the cell parameter. In turn, non‐negligible amounts of oxygen vacancies are also present, as evidenced from Rietveld refinements of the X‐ray diffraction patterns. In addition to (In1?xTMx)2O3?y, minor amounts of Co3O4, α‐Fe2O3, and MnxOy phases are also detected, which originate from the remaining TM cations not forming part of the bixbyite lattice. The resulting TM‐doped In2O3?y mesoporous materials show a ferromagnetic response at room temperature, superimposed on a paramagnetic background. Conversely, undoped In2O3?y exhibits a mixed diamagnetic‐ferromagnetic behavior with much smaller magnetization. The influence of the oxygen vacancies and the doping elements on the magnetic properties of these materials is discussed. Due to their 3D mesostructural geometrical arrangement and their room‐temperature ferromagnetic behavior, mesoporous oxide‐diluted magnetic semiconductors may become smart materials for the implementation of advanced components in spintronic nanodevices.  相似文献   

17.
A series of uniform rare‐earth‐doped hematite (α‐Fe2O3) nanoparticles are synthesized by a facile hydrothermal strategy. In a typical case of gadolinium (Gd)‐doped α‐Fe2O3, the morphology and chemical composition can be readily tailored by tuning the initial proportion of Gd3+/Fe3+ sources. As a result, the products are observed to be stretched into more elongated shapes with an increasing dopant ratio. As a benefit of such an elongated morphological feature and Gd3+ ions of larger effective magnetic moment than Fe3+, the doped product with the highest ratio of Gd3+ at 5.7% shows abnormal ferromagnetic features with a remnant magnetization of 0.605 emu g?1 and a coercivity value of 430 Oe at 4 K. Density of states calculations also reveal the increase of total magnetic moment induced by Gd3+ dopant in α‐Fe2O3 hosts, as well as possible change of magnetic arrangement. As‐synthesized Gd‐doped α‐Fe2O3 nanoparticles are probed as contrast agents for T1‐weighted magnetic resonance imaging, achieving a remarkable enhancement effect for both in vitro and in vivo tests.  相似文献   

18.
Multiferroic epitaxial Bi‐Fe‐O thin films of different thicknesses (15–500 nm) were grown on SrTiO3 (001) substrates by pulsed laser deposition under various oxygen partial pressures to investigate the microstructural evolution in the Bi‐Fe‐O system and its effect on misfit strain relaxation and on the magnetic properties of the films. Films grown at low oxygen partial pressure show the canted antiferromagnetic phase α‐Fe2O3 embedded in a matrix of BiFeO3. The ferromagnetic phase, γ‐Fe2O3 is found to precipitate inside the α‐Fe2O3 grains. The formation of these phases changes the magnetic properties of the films and the misfit strain relaxation mechanism. The multiphase films exhibit both highly strained and fully relaxed BiFeO3 regions in the same film. The magnetization in the multiphase Bi‐Fe‐O films is controlled by the presence of the γ‐Fe2O3 phase rather than heteroepitaxial strain as it is the case in pure single phase BiFeO3. Also, our results show that this unique accommodation of misfit strain by the formation of α‐Fe2O3 gives rise to significant enhancement of the piezo electric properties of BiFeO3.  相似文献   

19.
Naked magnetically recyclable mesoporous Au–γ‐Fe2O3 clusters, combining the inherent magnetic properties of γ‐Fe2O3 and the high catalytic activity of Au nanoparticles (NPs), are successfully synthesized. Hydrophobic Au–Fe3O4 dimers are first self‐assembled to form sub‐micrometer‐sized Au–Fe3O4 clusters. The Au–Fe3O4 clusters are then coated with silica, calcined at 550 °C, and finally alkali treated to dissolve the silica shell, yielding naked‐Au–γ‐Fe2O3 clusters containing Au NPs of size 5–8 nm. The silica protection strategy serves to preserve the mesoporous structure of the clusters, inhibit the phase transformation from γ‐Fe2O3 to α‐Fe2O3, and prevent cluster aggregation during the synthesis. For the reduction of p‐nitrophenol by NaBH4, the activity of the naked‐Au–γ‐Fe2O3 clusters is ≈22 times higher than that of self‐assembled Au–Fe3O4 clusters. Moreover, the naked‐Au–γ‐Fe2O3 clusters display vastly superior activity for CO oxidation compared with carbon‐supported Au–γ‐Fe2O3 dimers, due to the intimate interfacial contact between Au and γ‐Fe2O3 in the clusters. Following reaction, the naked‐Au–γ‐Fe2O3 clusters can easily be recovered magnetically and reused in different applications, adding to their versatility. Results suggest that naked‐Au–γ‐Fe2O3 clusters are a very promising catalytic platform affording high activity. The strategy developed here can easily be adapted to other metal NP–iron oxide systems.  相似文献   

20.
Construction of multifunctional stimuli‐responsive nanosystems intelligently responsive to inner physiological and/or external irradiations based on nanobiotechnology can enable the on‐demand drug release and improved diagnostic imaging to mitigate the side‐effects of anticancer drugs and enhance the diagnostic/therapeutic outcome simultaneously. Here, a triple‐functional stimuli‐responsive nanosystem based on the co‐integration of superparamagnetic Fe3O4 and paramagnetic MnOx nanoparticles (NPs) onto exfoliated graphene oxide (GO) nanosheets by a novel and efficient double redox strategy (DRS) is reported. Aromatic anticancer drug molecules can interact with GO nanosheets through supramolecular π stacking to achieve high drug loading capacity and pH‐responsive drug releasing performance. The integrated MnOx NPs can disintegrate in mild acidic and reduction environment to realize the highly efficient pH‐responsive and reduction‐triggered T1‐weighted magnetic resonance imaging (MRI). Superparamagnetic Fe3O4 NPs can not only function as the T2‐weighted contrast agents for MRI, but also response to the external magnetic field for magnetic hyperthermia against cancer. Importantly, the constructed biocompatible GO‐based nanoplatform can inhibit the metastasis of cancer cells by downregulating the expression of metastasis‐related proteins, and anticancer drug‐loaded carrier can significantly reverse the multidrug resistance (MDR) of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号