首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Here, a highly crystalline and self‐assembled 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pentacene) thin films formed by simple spin‐coating for the fabrication of high‐performance solution‐processed organic field‐effect transistors (OFETs) are reported. Rather than using semiconducting organic small‐molecule–insulating polymer blends for an active layer of an organic transistor, TIPS‐Pentacene organic semiconductor is separately self‐assembled on partially crosslinked poly‐4‐vinylphenol:poly(melamine‐co‐formaldehyde) (PVP:PMF) gate dielectric, which results in a vertically segregated semiconductor‐dielectric film with millimeter‐sized spherulite‐crystalline morphology of TIPS‐Pentacene. The structural and electrical properties of TIPS‐Pentacene/PVP:PMF films have been studied using a combination of polarized optical microscopy, atomic force microscopy, 2D‐grazing incidence wide‐angle X‐ray scattering, and secondary ion mass spectrometry. It is finally demonstrated a high‐performance OFETs with a maximum hole mobility of 3.40 cm2 V?1 s?1 which is, to the best of our knowledge, one of the highest mobility values for TIPS‐Pentacene OFETs fabricated using a conventional solution process. It is expected that this new deposition method would be applicable to other small molecular semiconductor–curable polymer gate dielectric systems for high‐performance organic electronic applications.  相似文献   

2.
While many high‐performance polymer semiconductors are reported for organic field‐effect transistors (OFETs), most require a high‐temperature postdeposition annealing of channel semiconductors to achieve high performance. This negates the fundamental attribute of OFETs being a low‐cost alternative to conventional high‐cost silicon technologies. A facile solution process is developed through which high‐performance OFETs can be fabricated without thermal annealing. The process involves incorporation of an incompatible hydrocarbon binder or wax into the channel semiconductor composition to drive rapid phase separation and instantaneous crystallization of polymer semiconductor at room temperature. The resulting composite channel semiconductor film manifests a nano/microporous surface morphology with a continuous semiconductor nanowire network. OFET mobility of up to about 5 cm2 V?1 s?1 and on/off ratio ≥ 106 are attained. These are hitherto benchmark performance characteristics for room‐temperature, solution‐processed polymer OFETs, which are functionally useful for many impactful applications.  相似文献   

3.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

4.
Although high carrier mobility organic field‐effect transistors (OFETs) are required for high‐speed device applications, improving the carrier mobility alone does not lead to high‐speed operation. Because the cut‐off frequency is determined predominantly by the total resistance and parasitic capacitance of a transistor, it is necessary to miniaturize OFETs while reducing these factors. Depositing a dopant layer only at the metal/semiconductor interface is an effective technique to reduce the contact resistance. However, fine‐patterning techniques for a dopant layer are still challenging especially for a top‐contact solution‐processed OFET geometry because organic semiconductors are vulnerable to chemical damage by solvents. In this work, high‐resolution, damage‐free patterning of a dopant layer is developed to fabricate short‐channel OFETs with a dopant interlayer inserted at the contacts. The fabricated OFETs exhibit high mobility exceeding 10 cm2 V?1 s?1 together with a reasonably low contact resistance, allowing for high frequency operation at 38 MHz. In addition, a diode‐connected OFET shows a rectifying capability of up to 78 MHz at an applied voltage of 5 V. This shows that an OFET can respond to the very high frequency band, which is beneficial for long‐distance wireless communication.  相似文献   

5.
Nanoscale hybrid dielectrics composed of an ultra‐thin polymeric low‐κ bottom layer and an ultra‐thin high‐κ oxide top layer, with high dielectric strength and capacitances up to 0.25 μFcm?2, compatible with low‐voltage, low‐power, organic electronic circuits are demonstrated. An efficient and reliable fabrication process, with 100% yield achieved on lab‐scale arrays, is demonstrated by means of pulsed laser deposition (PLD) for the fast growth of the oxide layer. With this strategy, high capacitance top gate (TG), n‐type and p‐type organic field effect transistors (OFETs) with high mobility, low leakage currents, and low subthreshold slopes are realized and employed in complementary‐like inverters, exhibiting ideal switching for supply voltages as low as 2 V. Importantly, the hybrid double‐layer allows for a neat decoupling between the need for a high capacitance, guaranteed by the nanoscale thickness of the double layer, and for an optimized semiconductor–dielectric interface, a crucial point in enabling high mobility OFETs, thanks to the low‐κ polymeric dielectric layer in direct contact with the polymer semiconductor. It is shown that such decoupling can be achieved already with a polymer dielectric as thin as 10 nm when the top oxide is deposited by PLD. This paves the way for a very versatile implementation of the proposed approach for the scaling of the operating voltages of TG OFETs with very low level of dielectric leakage currents to the fabrication of low‐voltage organic electronics with drastically reduced power consumption.  相似文献   

6.
This work innovatively develops a dual solution‐shearing method utilizing the semiconductor concentration region close to the solubility limit, which successfully generates large‐area and high‐performance semiconductor monolayer crystals on the millimeter scale. The monolayer crystals with poly(methyl methacrylate) encapsulation show the highest mobility of 10.4 cm2 V?1 s?1 among the mobility values in the reported solution‐processed semiconductor monolayers. With similar mobility to multilayer crystals, light is shed on the charge accumulation mechanism in organic field‐effect transistors (OFETs), where the first layer on interface bears the most carrier transport task, and the other above layers work as carrier suppliers and encapsulations to the first layer. The monolayer crystals show a very low dependency on channel directions with a small anisotropic ratio of 1.3. The positive mobility–temperature correlation reveals a thermally activated carrier transport mode in the monolayer crystals, which is different from the band‐like transport mode in multilayer crystals. Furthermore, because of the direct exposure of highly conductive channels, the monolayer crystal based OFETs can sense ammonia concentrations as low as 10 ppb. The decent sensitivity indicates the monolayer crystals are potential candidates for sensor applications.  相似文献   

7.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

8.
Using non‐chlorinated solvents for polymer device fabrication is highly desirable to avoid the negative environmental and health effects of chlorinated solvents. Here, a non‐chlorinated mixed solvent system, composed by a mixture of tetrahydronaphthalene and p­‐xylene, is described for processing a high mobility donor‐acceptor fused thiophene‐diketopyrrolopyrrole copolymer (PTDPPTFT4) in thin film transistors. The effects of the use of a mixed solvent system on the device performance, e.g., charge transport, morphology, and molecular packing, are investigated. p‐Xylene is chosen to promote polymer aggregation in solution, while a higher boiling point solvent, tetrahydronaphthalene, is used to allow a longer evaporation time and better solubility, which further facilitates morphological tuning. By optimizing the ratio of the two solvents, the charge transport characteristics of the polymer semiconductor device are observed to significantly improve for polymer devices deposited by spin coating and solution shearing. Average charge carrier mobilities of 3.13 cm2 V?1 s?1 and a maximum value as high as 3.94 cm2 V?1 s?1 are obtained by solution shearing. The combination of non‐chlorinated mixed solvents and the solution shearing film deposition provide a practical and environmentally‐friendly approach to achieve high performance polymer transistor devices.  相似文献   

9.
Polymer dielectrics with intrinsic mechanical flexibility are considered as a key component for flexible organic field‐effect transistors (OFETs). However, it remains a challenge to fabricate highly aligned organic semiconductor single crystal (OSSC) arrays on the polymer dielectrics. Herein, for the first time, a facile and universal strategy, polar surface‐confined crystallization (PSCC), is proposed to grow highly aligned OSSC arrays on poly(4‐vinylphenol) (PVP) dielectric layer. The surface polarity of PVP is altered periodically with oxygen‐plasma treatment, enabling the preferential nucleation of organic crystals on the strong‐polarity regions. Moreover, a geometrical confinement effect of the patterned regions can also prevent multiple nucleation and misaligned molecular packing, enabling the highly aligned growth of OSSC arrays with uniform morphology and unitary crystallographic orientation. Using 2,7‐dioctyl[1]benzothieno[3,2‐b]benzothiophene (C8‐BTBT) as an example, highly aligned C8‐BTBT single crystal arrays with uniform molecular packing and crystal orientation are successfully fabricated on the PVP layer, which can guarantee their uniform electrical properties. OFETs made from the C8‐BTBT single crystal arrays on flexible substrates exhibit a mobility as high as 2.25 cm2 V?1 s?1, which has surpassed the C8‐BTBT polycrystalline film‐based flexible devices. This work paves the way toward the fabrication of highly aligned OSSCs on polymer dielectrics for high‐performance, flexible organic devices.  相似文献   

10.
A new high‐performing small molecule n‐channel semiconductor based on diketopyrrolopyrrole (DPP), 2,2′‐(5,5′‐(2,5‐bis(2‐ethylhexyl)‐3,6‐dioxo‐2,3,5,6‐tetrahydropyrrolo[3,4‐c]pyrrole‐1,4‐diyl)bis(thiophene‐5,2‐diyl))bis(methan‐1‐yl‐1‐ylidene)dimalononitrile (DPP‐T‐DCV), is successfully synthesized. The frontier molecular orbitals in this designed structure are elaborately tuned by introducing a strong electron‐accepting functionality (dicyanovinyl). The well‐defined lamellar structures of the crystals display a uniform terrace step height corresponding to a molecular monolayer in the solid‐state. As a result of this tuning and the remarkable crystallinity derived from the conformational planarity, organic field‐effect transistors (OFETs) based on dense‐packed solution‐processed single‐crystals of DPP‐T‐DCV exhibit an electron mobility (μe) up to 0.96 cm2 V?1 s?1, one of the highest values yet obtained for DPP derivative‐based n‐channel OFETs. Polycrystalline OFETs show promise (with an μe up to 0.64 cm2 V?1 s?1) for practical utility in organic device applications.  相似文献   

11.
By changing the packing motif of the conjugated cores and the thin‐film microstructures, unipolar organic semiconductors may be converted into ambipolar materials. A combined experimental and theoretical investigation is conducted on the thin‐film organic field‐effect transistors (OFETs) of three organic semiconductors that have the same conjugated core structure of s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐4,9‐dione but with different n‐alkyl groups. The optical and electrochemical measurements suggest that the three organic semiconductors have very similar energy levels; however, their OFETs exhibit dramatically different transport characteristics. Transistors based on compound 1a or 1c show ambipolar transport properties, while those based on compound 1b show p‐type unipolar behavior. Specifically, compound 1c is characterized as a good ambipolar semiconductor with the highest electron mobility of 0.22 cm2 V?1 s?1 and the highest hole mobility of 0.03 cm2 V?1 s?1. Complementary metal oxide semiconductor (CMOS) inverters incorporated with compound 1c show sharp inversions with high gains above 50. Theoretical investigations reveal that the drastic difference in the transport properties of the three materials is due to the difference in their molecular packing and film microstructures.  相似文献   

12.
Controlling the interfacial properties between the electrode and active layer in organic field‐effect transistors (OFETs) can significantly affect their contact properties, resulting in improvements in device performance. However, it is difficult to apply to top‐contact‐structured OFETs (one of the most useful device structures) because of serious damage to the organic active layer by exposing solvent. Here, a spontaneously controlled approach is explored for optimizing the interface between the top‐contacted source/drain electrode and the polymer active layer to improve the contact resistance (RC). To achieve this goal, a small amount of interface‐functionalizing species is blended with the p‐type polymer semiconductor and functionalized at the interface region at once through a thermal process. The RC values dramatically decrease after introduction of the interfacial functionalization to 15.9 kΩ cm, compared to the 113.4 kΩ cm for the pristine case. In addition, the average field‐effect mobilities of the OFET devices increase more than three times, to a maximum value of 0.25 cm2 V?1 s?1 compared to the pristine case (0.041 cm2 V?1 s?1), and the threshold voltages also converge to zero. This study overcomes all the shortcomings observed in the existing results related to controlling the interface of top‐contact OFETs by solving the discomfort of the interface optimization process.  相似文献   

13.
The thin‐film structures of chemical sensors based on conventional organic field‐effect transistors (OFETs) can limit the sensitivity of the devices toward chemical vapors, because charge carriers in OFETs are usually concentrated within a few molecular layers at the bottom of the organic semiconductor (OSC) film near the dielectric/semiconductor interface. Chemical vapor molecules have to diffuse through the OSC films before they can interact with charge carriers in the OFET conduction channel. It has been demonstrated that OFET ammonia sensors with porous OSC films can be fabricated by a simple vacuum freeze‐drying template method. The resulted devices can have ammonia sensitivity not only much higher than the pristine OFETs with thin‐film structure but also better than any previously reported OFET sensors, to the best of our knowledge. The porous OFETs show a relative sensitivity as high as 340% ppm?1 upon exposure to 10 parts per billion (ppb) NH3. In addition, the devices also exhibit decent selectivity and stability. This general and simple strategy can be applied to a wide range of OFET chemical sensors to improve the device sensitivity.  相似文献   

14.
Charge transport in the ribbon phase of poly(2,5‐bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophene) (PBTTT)—one of the most highly ordered, chain‐extended crystalline microstructures available in a conjugated polymer semiconductor—is studied. Ribbon‐phase PBTTT has previously been found not to exhibit high carrier mobilities, but it is shown here that field‐effect mobilities depend strongly on the device architecture and active interface. When devices are constructed such that the ribbon‐phase films are in contact with either a polymer gate dielectric or an SiO2 gate dielectric modified by a hydrophobic, self‐assembled monolayer, high mobilities of up to 0.4 cm2 V?1 s?1 can be achieved, which is comparable to those observed previously in terrace‐phase PBTTT. In uniaxially aligned, zone‐cast films of ribbon‐phase PBTTT the mobility anisotropy is measured for transport both parallel and perpendicular to the polymer chain direction. The mobility anisotropy is relatively small, with the mobility along the polymer chain direction being higher by a factor of 3–5, consistent with the grain size encountered in the two transport directions.  相似文献   

15.
Organic field‐effect transistors (OFETs) have attracted much attention for the next‐generation electronics. Despite of the rapid developments of OFETs, operational stability is a big challenge for their commercial applications. Moreover, the actual mechanism behind the degradation of electron transport is still poorly understood. Here, the electrical characteristics of poly{[N,N‐9‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,59‐(2,29‐bithiophene)} (P(NDI2OD‐T2)) thin‐film transistors (TFTs) as a function of semiconductor/dielectric interfacial property and environment are systematically investigated, in particular, how the copresence of water, oxygen, and active hydrogen on the surface of dielectric leads to a sharp drop‐off in threshold voltage. Evidence is found that an acid–base neutralization reaction occurring at the interface, as a combined effect of the chemical instability of dielectrics and the electrochemical instability of organic semiconductors, contributes to the significant electron trapping on the interface of P(NDI2OD‐T2) TFTs. Two strategies, increasing the intrinsic electrochemical stability of semiconductor and decreasing the chemical reactivity of gate dielectric, are demonstrated to effectively suppress the reaction and thus improve the operational stability of n‐type OFETs. The results provide an alternative degradation pathway to better understand the charge transport instability in n‐type OFETs, which is advantageous to construct high‐performance OFETs with long‐term stability.  相似文献   

16.
The synthesis of a new tetrathiafulvalene derivative with an electron‐withdrawing benzothiadiazole moiety and its use in thin‐film organic field‐effect transistors (OFETs) are reported. Compared to reported OFETs with other TTF derivatives, a high hole mobility up to 0.73 cm2 V?1 s?1, low off‐current and high on/off ratio up to 105 are demonstrated. In addition, the developed OFETs show fast responsiveness toward chemical vapors of DECP (diethyl chlorophosphate) or POCl3 which are simulants of phosphate‐based nerve agents. In contrast to previously reported OFET‐based sensors, off‐current is used as the output signal, which increases quickly upon exposure to either DECP or POCl3 vapors. High sensitivity is demonstrated toward DECP and POCl3 vapors, with concentrations as low as 10 ppb being detected. These OFETs are also responsive to TNT vapor. The sensing mechanisms for the new type of OFET are discussed.  相似文献   

17.
Polyelectrolytes are promising materials as gate dielectrics in organic field‐effect transistors (OFETs). Upon gate bias, their polarization induces an ionic charging current, which generates a large double layer capacitor (10–500 µF cm?2) at the semiconductor/electrolyte interface. The resulting transistor operates at low voltages (<1 V) and its conducting channel is formed in ~50 µs. The effect of ionic currents on the performance of the OFETs is investigated by varying the relative humidity of the device ambience. Within defined humidity levels and potential values, the water electrolysis is negligible and the OFETs performances are optimum.  相似文献   

18.
The mass production technique of gravure contact printing is used to fabricate state‐of‐the art polymer field‐effect transistors (FETs). Using plastic substrates with prepatterned indium tin oxide source and drain contacts as required for display applications, four different layers are sequentially gravure‐printed: the semiconductor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), two insulator layers, and an Ag gate. A crosslinkable insulator and an Ag ink are developed which are both printable and highly robust. Printing in ambient and using this bottom‐contact/top‐gate geometry, an on/off ratio of >104 and a mobility of 0.04 cm2 V?1 s?1 are achieved. This rivals the best top‐gate polymer FETs fabricated with these materials. Printing using low concentration, low viscosity ink formulations, and different P3HT molecular weights is demonstrated. The printing speed of 40 m min?1 on a flexible polymer substrate demonstrates that very high‐volume, reel‐to‐reel production of organic electronic devices is possible.  相似文献   

19.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

20.
Self‐assembled monolayer (SAM) is usually applied to tune the interface between dielectric and active layer of organic field‐effect transistors (OFETs) and other organic electronics, a time‐saving, direct patterning approach of depositing well‐ordered SAMs is highly desired. Here, a new direct patterning method of SAMs by stamp printing or roller printing with special designed stamps is introduced. The chemical structures of the paraffin hydrocarbon molecules and the tail groups of SAMs have allowed to use their attractive van der Waals force for the direct patterning of SAMs. Different SAMs including alkyl and fluoroalkyl silanes or phosphonic acids are used to stamp onto different dielectric surfaces and are characterized by water contact angle, atomic force microscopy, X‐ray diffraction, and attenuated total reflectance Fourier transform infrared. The p‐type dinaphtho[2,3‐b:2′,3′‐f]thieno[3,2‐b]thiophene (DNTT) and n‐type F16CuPc OFETs show competitive mobility as high as 3 and 0.018 cm2 V?1 s?1, respectively. This stamp printing method also allows to deposit different SAMs on certain regions of same substrate, and the complementary inverter consists of both p‐type and n‐type transistors whose threshold voltages are tuned by stamp printing SAMs and shows a gain higher than 100. The proposed stamp or roller printing method can significantly reduce the deposition time and compatible with the roll‐to‐roll fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号