首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

2.
Here, a novel fabrication technique for integrated organic devices on substrates with complex structure is presented. For this work, free‐standing polymeric masks with stencil‐patterns are fabricated using an ultra‐violet (UV) curable polyurethaneacrylate (PUA) mixture, and used as shadow masks for thermal evaporation. High flexibility and adhesive properties of the free‐standing PUA masks ensure conformal contact with various materials such as glass, silicon (Si), and polymer, and thus can also be utilized as patterning masks for solution‐based deposition methods, such as spin‐coating and drop‐casting. Based on this technique, a number of integrated organic transistors are fabricated simultaneously on a cylindrical glass bottle with high curvature, as well as on a flat silicon wafer. It is anticipated that these results will be applied to the development of various integrated organic devices on complex‐structured substrates, which can lead to further applications.  相似文献   

3.
The field of organic electronics has seen tremendous progress over the last years and all‐solution‐based processes are believed to be one of the key routes to ultra low‐cost roll‐to‐roll device and circuit fabrication. In this regard a variety of functional materials has been successfully designed for inkjet printing. While orthogonal‐solvent approaches have frequently been used to tackle the solubility issue in multilayer solution processing, the focus of this work lies on printed metal electrodes for organic field‐effect transistors (OFET) and their curing concepts. Two metallic inkjet‐printable materials are studied: i) a silver‐copper nanoparticle based dispersion and ii) a soluble organic silver‐precursor. Photoelectron spectroscopy reveals largely metallic properties of the cured materials, which are compared with respect to OFET performance and process‐related issues. Contact resistance of the prepared metal electrodes is significantly larger than that of evaporated top‐contact gold electrodes. As direct patterning via inkjet printing limits the reliably achievable channel length to values well above 10 μm, the influence of contact resistance is rather small, however, and overall device performance is comparable.  相似文献   

4.
In organic electronics solution‐processable n‐channel field‐effect transistors (FETs) matching the parameters of the best p‐channel FETs are needed. Progress toward the fabrication of such devices is strongly impeded by a limited number of suitable organic semiconductors as well as by the lack of processing techniques that enable strict control of the supramolecular organization in the deposited layer. Here, the use of N,N′‐bis(4‐n‐butylphenyl)‐1,4,5,8‐naphthalenetetracarboxylic‐1,4:5,8‐bisimide (NBI‐4‐n‐BuPh) for fabrication of n‐channel FETs is described. The unidirectionally oriented crystalline layers of NBI‐4‐n‐BuPh are obtained by the zone‐casting method under ambient conditions. Due to the bottom‐contact, top‐gate configuration used, the gate dielectric, Parylene C, also acts as a protective layer. This, together with a sufficiently low LUMO level of NBI‐4‐n‐BuPh allows the fabrication and operation of these novel n‐channel transistors under ambient conditions. The high order of the NBI‐4‐n‐BuPh molecules in the zone‐cast layer and high purity of the gate dielectric yield good performance of the transistors.  相似文献   

5.
Here, a new approach to the layer‐by‐layer solution‐processed fabrication of organic/inorganic hybrid self‐assembled nanodielectrics (SANDs) is reported and it is demonstrated that these ultrathin gate dielectric films can be printed. The organic SAND component, named P‐PAE, consists of polarizable π‐electron phosphonic acid‐based units bound to a polymeric backbone. Thus, the new polymeric SAND (PSAND) can be fabricated either by spin‐coating or blade‐coating in air, by alternating P‐PAE, a capping reagent layer, and an ultrathin ZrOx layer. The new PSANDs thickness vary from 6 to 15 nm depending on the number of organic‐ZrOx bilayers, exhibit tunable film thickness, well‐defined nanostructures, large electrical capacitance (up to 558 nF cm?2), and good insulating properties (leakage current densities as low as 10?6 A cm?2). Organic thin‐film transistors that are fabricated with representative p‐/n‐type organic molecular/polymeric semiconducting materials, function well at low voltages (<3.0 V). Furthermore, flexible TFTs fabricated with PSAND exhibit excellent mechanical flexibility and good stress stability, offering a promising route to low operating voltage flexible electronics. Finally, printable PSANDs are also demonstrated and afford TFTs with electrical properties comparable to those achieved with the spin‐coated PSAND‐based devices.  相似文献   

6.
Large‐area, ultrathin light‐emitting devices currently inspire architects and interior and automotive designers all over the world. Light‐emitting electrochemical cells (LECs) and quantum dot light‐emitting diodes (QD‐LEDs) belong to the most promising next‐generation device concepts for future flexible and large‐area lighting technologies. Both concepts incorporate solution‐based fabrication techniques, which makes them attractive for low cost applications based on, for example, roll‐to‐roll fabrication or inkjet printing. However, both concepts have unique benefits that justify their appeal. LECs comprise ionic species in the active layer, which leads to the omission of additional organic charge injection and transport layers and reactive cathode materials, thus LECs impress with their simple device architecture. QD‐LEDs impress with purity and opulence of available colors: colloidal quantum dots (QDs) are semiconducting nanocrystals that show high yield light emission, which can be easily tuned over the whole visible spectrum by material composition and size. Emerging technologies that unite the potential of both concepts (LEC and QD‐LED) are covered, either by extending a typical LEC architecture with additional QDs, or by replacing the entire organic LEC emitter with QDs or perovskite nanocrystals, still keeping the easy LEC setup featured by the incorporation of mobile ions.  相似文献   

7.
Limited charge carrier mobility of organic semiconductors, especially for solution‐processed polymer thin films, has typically relegated organic electronics to low‐frequency operation. Nevertheless, thanks to a steady increase in electronic properties of organics, much higher operation frequencies are feasible, suggesting a possible and appealing scenario where lightweight, cost‐effective, and conformable electronics can integrate both sensing and radio‐frequency transmitting functionalities, which are the key to unlock pervasive networks of distributed sensors revolutionizing human–environment interaction. Few years ago, it was suggested that gigahertz (GHz) field‐effect transistors could be achievable even with solution‐based processes. This was the basis for the European Research Council project high‐frequency printed and direct‐written organic‐hybrid integrated circuits (HEROIC), which in the last few years investigated such unexplored path. Here, the authors report their vision toward the achievement of radio‐frequency organic electronics mainly with solution‐based and scalable processes, with reference to the experience of the HEROIC project and to some of the most notable literature examples. The authors show that the achievement of solution‐processable organic field‐effect transistors with GHz operation is indeed feasible, but requires considering a carefully revised scenario in which the main role is played by charge injection, together with the geometric overlap, the capacitive parasitism associated to fringing and some constraints on the dielectric layer thickness.  相似文献   

8.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) grids have been successfully constructed by roll‐to‐roll compatible screen‐printing techniques and have been used as indium tin oxide (ITO)‐free anodes for flexible organic light‐emitting diodes (OLEDs). The grid‐type transparent conductive electrodes (TCEs) can adopt thicker PEDOT: PSS grid lines to ensure the conductivity, while the mesh‐like grid structure can play an important role to maintain high optical transparency. By adjusting grid periods, grid thickness and treatment of organic additives, PEDOT: PSS TCEs with high optical transparency, low sheet resistance, and excellent mechanical flexibility have been achieved. Using the screen‐printed PEDOT: PSS grids as the anodes, ITO‐free OLEDs achieved peak current efficiency of 3.40 cd A?1 at the current density of 10 mA cm?2, which are 1.56 times better than the devices with ITO glass as the anodes. The improved efficiency is attributed to the light extraction effect and improved transparency by the grid structure. The superior optoelectronic performances of OLEDs based on flexible screen‐printed PEDOT: PSS grid anodes suggest their great prospects as ITO‐free anodes for flexible and wearable electronic applications.  相似文献   

9.
“Regioselectivity deposition” method is developed to pattern silver electrodes facilely and efficiently by solution‐process with high resolution (down to 2 μm) on different substrates in A4 paper size. With the help of this method, large‐area, flexible, high‐performance polymer field‐effect transistors based on the silver electrodes and polyimide insulator are fabricated with bottom‐contact configuration by all‐solution processes. The polymer devices exhibit high performance with average field‐effect mobility over 1.0 cm2 V?1 s?1 (the highest mobility up to 1.5 cm2 V?1 s?1) and excellent environmental stability and flexibility, indicating the cost effectiveness of this method for practical applications in organic electronics.  相似文献   

10.
π‐conjugated molecular organics such as rubrene, Alq3, fullerene, and PCBM have been used extensively over the last few decades in numerous organic electronic devices, including solar cells, thin‐film transistors, and large‐area, low‐cost flexible displays. Rubrene and Alq3, have emerged as promising platforms for spin‐based classical and quantum information processing, which has triggered significant research activity in the relatively new area of organic spintronics. Synthesis of these materials in a nanowire geometry, with feature sizes in the sub‐100 nm regime, is desirable as it often enhances device performance and is essential for development of high‐density molecular electronic devices. However, fabrication techniques that meet this stringent size constraint are still largely underdeveloped. Here, a novel, versatile, and reagentless method that enables growth of nanowire arrays of the above‐mentioned organics in the cylindrical nanopores of anodic aluminum oxide (AAO) templates is demonstrated. This method 1) allows synthesis of high‐density organic nanowire arrays on arbitrary substrates, 2) provides electrical access to the nanowire arrays, 3) offers tunability of the array geometry in a range overlapping with the relevant physical length scales of many organic devices, and 4) can potentially be extended to synthesize axially and radially heterostructured organic nanowires. Thus prepared nanowires are characterized extensively with an aim to identify their potential applications in diverse areas such as organic optoelectronics, photovoltaics, molecular nanoelectronics, and spintronics.  相似文献   

11.
Biocompatible‐ingestible electronic circuits and capsules for medical diagnosis and monitoring are currently based on traditional silicon technology. Organic electronics has huge potential for developing biodegradable, biocompatible, bioresorbable, or even metabolizable products. An ideal pathway for such electronic devices involves fabrication with materials from nature, or materials found in common commodity products. Transistors with an operational voltage as low as 4–5 V, a source drain current of up to 0.5 μA and an on‐off ratio of 3–5 orders of magnitude have been fabricated with such materials. This work comprises steps towards environmentally safe devices in low‐cost, large volume, disposable or throwaway electronic applications, such as in food packaging, plastic bags, and disposable dishware. In addition, there is significant potential to use such electronic items in biomedical implants.  相似文献   

12.
Nanoscale hybrid dielectrics composed of an ultra‐thin polymeric low‐κ bottom layer and an ultra‐thin high‐κ oxide top layer, with high dielectric strength and capacitances up to 0.25 μFcm?2, compatible with low‐voltage, low‐power, organic electronic circuits are demonstrated. An efficient and reliable fabrication process, with 100% yield achieved on lab‐scale arrays, is demonstrated by means of pulsed laser deposition (PLD) for the fast growth of the oxide layer. With this strategy, high capacitance top gate (TG), n‐type and p‐type organic field effect transistors (OFETs) with high mobility, low leakage currents, and low subthreshold slopes are realized and employed in complementary‐like inverters, exhibiting ideal switching for supply voltages as low as 2 V. Importantly, the hybrid double‐layer allows for a neat decoupling between the need for a high capacitance, guaranteed by the nanoscale thickness of the double layer, and for an optimized semiconductor–dielectric interface, a crucial point in enabling high mobility OFETs, thanks to the low‐κ polymeric dielectric layer in direct contact with the polymer semiconductor. It is shown that such decoupling can be achieved already with a polymer dielectric as thin as 10 nm when the top oxide is deposited by PLD. This paves the way for a very versatile implementation of the proposed approach for the scaling of the operating voltages of TG OFETs with very low level of dielectric leakage currents to the fabrication of low‐voltage organic electronics with drastically reduced power consumption.  相似文献   

13.
Transient electronics, arising electronic devices with dissolvable or degradable features on demand, is still at an early stage of development due to the limited choices of materials and strategies. Herein, a facile fabrication method for transient circuits by the combination of room‐temperature liquid metals (RTLMs) as the electronic circuit and water‐soluble poly(vinyl alcohol) (PVA) as the packaging material is reported. The as‐made transient circuits exhibit remarkable durability and stable electric performance upon bending and twisting, while possessing short transience times, owing to the excellent solubility of PVA substrates and the intrinsic flexibility of RTLM patterns. Moreover, the RTLM‐based transient circuit shows an extremely high recycling efficiency, up to 96% of the employed RTLM can be recovered. As such, the economic and environmental viability of transient electronics increases substantially. To validate this concept, the surface patterning of RTLMs with complicated shapes is demonstrated, and a transient antenna is subsequently applied for passive near‐field communication tag and a transient capacitive touch sensor. The application of the RTLM‐based transient circuit for sequentially turning off an array of light‐emitting‐diode lamps is also demonstrated. The present RTLM‐based PVA‐encapsulated circuits substantially expand the scope of transient electronics toward flexible and recyclable transient systems.  相似文献   

14.
Printing organic semiconductor inks by means of roll‐to‐roll compatible techniques will allow a continuous, high‐volume fabrication of large‐area flexible optoelectronic devices. The gravure printing technique is set to become a widespread process for the high throughput fabrication of functional layers. The gravure printing process of a poly‐phenylvinylene derivative light‐emitting polymer dissolved in a two solvent mixture on poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is studied. The surface tensions, contact angles, viscosities, and drying times of the formulations are investigated as a function of the solvent volume fraction and polymer concentration. The properties of the ink grant a homogeneous printed layer, suitable for device fabrication, when the calculated film leveling time is shorter than a critical time, at which the film has been frozen due to loss of solvent via evaporation. The knowledge obtained from the printing process is applied to fabricate organic light‐emitting diodes (OLEDs) on flexible substrates, yielding a luminance of ≈5000 cd m?2.  相似文献   

15.
Biocompatible‐ingestible electronic circuits and capsules for medical diagnosis and monitoring are currently based on traditional silicon technology. Organic electronics has huge potential for developing biodegradable, biocompatible, bioresorbable, or even metabolizable products. An ideal pathway for such electronic devices involves fabrication with materials from nature, or materials found in common commodity products. Transistors with an operational voltage as low as 4–5 V, a source drain current of up to 0.5 μA and an on‐off ratio of 3–5 orders of magnitude have been fabricated with such materials. This work comprises steps towards environmentally safe devices in low‐cost, large volume, disposable or throwaway electronic applications, such as in food packaging, plastic bags, and disposable dishware. In addition, there is significant potential to use such electronic items in biomedical implants.  相似文献   

16.
Self‐assembled monolayer (SAM) is usually applied to tune the interface between dielectric and active layer of organic field‐effect transistors (OFETs) and other organic electronics, a time‐saving, direct patterning approach of depositing well‐ordered SAMs is highly desired. Here, a new direct patterning method of SAMs by stamp printing or roller printing with special designed stamps is introduced. The chemical structures of the paraffin hydrocarbon molecules and the tail groups of SAMs have allowed to use their attractive van der Waals force for the direct patterning of SAMs. Different SAMs including alkyl and fluoroalkyl silanes or phosphonic acids are used to stamp onto different dielectric surfaces and are characterized by water contact angle, atomic force microscopy, X‐ray diffraction, and attenuated total reflectance Fourier transform infrared. The p‐type dinaphtho[2,3‐b:2′,3′‐f]thieno[3,2‐b]thiophene (DNTT) and n‐type F16CuPc OFETs show competitive mobility as high as 3 and 0.018 cm2 V?1 s?1, respectively. This stamp printing method also allows to deposit different SAMs on certain regions of same substrate, and the complementary inverter consists of both p‐type and n‐type transistors whose threshold voltages are tuned by stamp printing SAMs and shows a gain higher than 100. The proposed stamp or roller printing method can significantly reduce the deposition time and compatible with the roll‐to‐roll fabrication.  相似文献   

17.
Organic electronics is an emerging technology that enables the fabrication of devices with low-cost and simple solution-based processes at room temperature. In particular, it is an ideal candidate for the Internet of Things since devices can be easily integrated in everyday objects, potentially creating a distributed network of wireless communicating electronics. Recent efforts allowed to boost operational frequency of organic field-effect transistors (OFETs), required to achieve efficient wireless communication. However, in the majority of cases, in order to increase the dynamic performances of OFETs, masks based lithographic techniques are used to reduce device critical dimensions, such as channel and overlap lengths. This study reports the successful integration of direct written metal contacts defining a 1.4 µm short channel, printed with ultra-precise deposition technique (UPD), in fully solution fabricated n-type OFETs. An average transition frequency as high as 25.5 MHz is achieved at 25 V. This result demonstrates the potential of additive, high-resolution direct-writing techniques for the fabrication of organic electronics operating in the high-frequency regime.  相似文献   

18.
Contact resistance significantly limits the performance of organic field‐effect transistors (OFETs). Positioning interlayers at the metal/organic interface can tune the effective work‐function and reduce contact resistance. Myriad techniques offer interlayer processing onto the metal pads in bottom‐contact OFETs. However, most methods are not suitable for deposition on organic films and incompatible with top‐contact OFET architectures. Here, a simple and versatile methodology is demonstrated for interlayer processing in both p‐ and n‐type devices that is also suitable for top‐contact OFETs. In this approach, judiciously selected interlayer molecules are co‐deposited as additives in the semiconducting polymer active layer. During top contact deposition, the additive molecules migrate from within the bulk film to the organic/metal interface due to additive‐metal interactions. Migration continues until a thin continuous interlayer is completed. Formation of the interlayer is confirmed by X‐ray photoelectron spectroscopy (XPS) and cross‐section scanning transmission electron microscopy (STEM), and its effect on contact resistance by device measurements and transfer line method (TLM) analysis. It is shown that self‐generated interlayers that reduce contact resistance in p‐type devices, increase that of n‐type devices, and vice versa, confirming the role of additives as interlayer materials that modulate the effective work‐function of the organic/metal interface.  相似文献   

19.
The use of biomaterials and bioinspired concepts in electronics will enable the fabrication of transient and disposable technologies within areas ranging from smart packaging and advertisement to healthcare applications. In this work, the use of a nonhalogenated biodegradable solid polymer electrolyte based on poly(ε‐caprolactone‐co‐trimethylene carbonate) and tetrabutylammonium bis‐oxalato borate in light‐emitting electrochemical cells (LECs) is presented. It is shown that the spin‐cast devices exhibit current efficiencies of ≈2 cd A?1 with luminance over ≈12 000 cd m?2, an order of magnitude higher than previous bio‐based LECs. By a combination of industrially relevant techniques (i.e., inkjet printing and blade coating), the fabrication of LEC devices on a cellulose‐based flexible biodegradable substrate showing lifetimes compatible with transient applications is demonstrated. The presented results have direct implications toward the industrial manufacturing of biomaterial‐based light‐emitting devices with potential use in future biodegradable/biocompatible electronics.  相似文献   

20.
Direct additive fabrication of thin‐film electronics using a high‐mobility, wide‐bandgap amorphous oxide semiconductor (AOS) can pave the way for integration of efficient power circuits with digital electronics. For power rectifiers, vertical thin‐film diodes (V‐TFDs) offer superior efficiency and higher frequency operation compared to lateral thin‐film transistors (TFTs). However, the AOS V‐TFDs reported so far require additional fabrication steps and generally suffer from low voltage handling capability. Here, these challenges are overcome by exploiting in situ reactions of molybdenum (Mo) during the solution‐process deposition of amorphous zinc tin oxide film. The oxidation of Mo forms the rectifying contact of the V‐TFD, while the simultaneous diffusion of Mo increases the diode's voltage range of operation. The resulting V‐TFDs are demonstrated in a full‐wave rectifier for wireless energy harvesting from a commercial radio‐frequency identification reader. Finally, by using the same Mo film for V‐TFD rectifying contacts and TFT gate electrodes, this process allows simultaneous fabrication of both devices without any additional steps. The integration of TFTs alongside V‐TFDs opens a new fabrication route for future low‐cost and large‐area thin‐film circuitry with embedded power management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号