首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Pt(II) complex, bearing an oligo‐ethyleneoxide pendant, is able to self‐assemble in ultralong ribbons that display mechanochromism upon nanoscale mechanical stimuli, delivered through atomic force microscopy (AFM). Such observation paves the way to fine understanding and manipulation of the mechanochromic properties of such material at the nanoscale. AFM allows quantitative assessment of nanoscale mechanochromism as arising from static pressure (piezochromism) and from shear‐based mechanical stimuli (tribochromism), and to compare them with bulk pressure‐dependent luminescence observed with diamond‐anvil cell (DAC) technique. Confocal spectral imaging reveals that mechanochromism only takes place within short distance from the localized mechanical stimulation, which allows to design high‐density information writing with AFM nanolithography applied on individual self‐assembled ribbons. Each ribbon hence serves as an individual microsystem for data storage. The orange luminescence of written information displays high contrast compared to cyan native luminescence; moreover, it can be selectively excited with visible light. In addition, ribbons show photochromism, i.e., the emission spectrum changes upon exposure to light, in a similar way as upon mechanical stress. Photochromism is here conveniently used to conceal and eventually erase information previously written with nanolithography by irradiation.  相似文献   

2.
The development of π‐conjugated molecular systems with high‐efficiency generation of UV and blue light plays an important role in the fields of light‐emitting diodes, fluorescent imaging, and information storage. Herein, supramolecular construction of solid‐state UV/blue luminescent materials are assembled using 2,5‐diphenyloxazole (DPO) with four typical co‐assembled building blocks (1,4‐diiodotetrafluorobenzene, 4‐bromotetrafluorobenzene carboxylic acid, pentafluorophenol, and octafluoronaphthalene). Compared with the pristine DPO sample, the as‐prepared two‐component molecular materials feature ease of crystallization, high crystallinity, enhanced thermal stability and tunable luminescence properties (such as emissive wavelength, color, fluorescence lifetime, and photoluminescence quantum yield) as well as multicolor polarized emission in the UV/blue region. Moreover, pump‐enhanced luminescence and reversible mechanochromic fluorescence (MCF) properties can also be obtained for these molecular solids, which are absent for the pristine DPO sample. Therefore, this work provides a procedure for the facile self‐assembly of ordered two‐component molecular materials with tunable UV/blue luminescence properties, which have potential application in the areas of light‐emitting displays, polarized emission, frequency doubling, and luminescent sensors.  相似文献   

3.
Luminescent hydrogels are of great potential for many fields, particularly serving as biomaterials ranging from fluorescent sensors to bioimaging agents. Here, robust luminescent hydrogels are reported using lanthanide complexes as emitting sources via a hierarchical organic–inorganic self‐assembling strategy. A new organic ligand is synthesized, consisting of a terpyridine unit and two flexibly linked methylimidazole moieties to coordinate with europium(III) (Eu3+) tri‐thenoyltrifluoroacetone (Eu(TTA)3), leading to a stable amphiphilic Eu3+‐containing monomer. Synergistic coordination of TTA and terpyridine units allows the monomer to self‐assemble into spherical micelles in water, thus maintaining the luminescence of Ln complexes in water. The micelles further coassemble with exfoliated Laponite nanosheets coated with sodium polyacrylate into networks based on the electrostatic interactions, resulting in the supramolecular hydrogel possessing strong luminescence, extraordinary mechanical property, as well as self‐healing ability. The results demonstrate that hierarchical organic–inorganic self‐assembly is a versatile and effective strategy to create luminescent hydrogels containing lanthanide complexes, giving rise to great potential applications as a soft material.  相似文献   

4.
Mechanofluorochromic materials have great potential for a wide variety of applications such as sensors, memory devices, motion systems, security systems, and so forth. However, only few design principles have been disclosed, which greatly impedes the growth of mechanofluorochromic dyes. Here, a strategy of molecular design for mechanochromic luminescence is reported, based on the cation–anion interaction‐directed switching of molecular stacking. On the basis of this strategy, a series of common N‐heteroaromatic onium fluorophores such as imidazolium, 1,2,4‐triazolium, triazolopyridinium, benzoimidazolium, γ‐carbolinium, and pyridinium salts have been designed and proved to have striking reversible mechanofluorochromic behaviors. The simple attachment of a non‐fluorescent imidazolium unit to the pyrene scaffold through a flexible carbon chain can even trigger the mechanofluorochromic phenomenon, which gives a consummate interpretation that the cation–anion interaction can be considered as an important general tool to design organic mechanochromic luminescent materials.  相似文献   

5.
Versatile strategies are currently being discovered for the fabrication of synthetic polypeptide‐based hybrid hydrogels, which have potential applications in polymer therapeutics and regenerative medicine. Herein, a new concept—the reverse micellar hydrogel—is introduced, and a versatile strategy is provided for fabricating supramolecular polypeptide‐based normal micellar hydrogel and reverse micellar hydrogels from the same polypeptide‐based copolymer via the cooperation of host–guest chemistry and hydrogen‐bonding interactions. The supramolecular hydrogels are thoroughly characterized, and a mechanism for their self‐assembly is proposed. These hydrogels can respond to dual stimuli—temperature and pH—and their mechanical and controlled drug‐release properties can be tuned by the copolymer topology and the polypeptide composition. The reverse micellar hydrogel can load 10% of the anticancer drug doxorubicin hydrochloride (DOX) and sustain DOX release for 45 days, indicating that it could be useful as an injectable drug delivery system.  相似文献   

6.
Switching of the luminescence properties of molecular materials in response to mechanical stimulation is of fundamental interest and also has a range of potential applications. Herein, a water‐soluble mechanochromic luminescent pyrene derivative having two hydrophilic dendrons is reported. This pyrene derivative is the first example of a mechanochromic luminescent organic compound that responds to relative humidity. Mechanical stimulation (grinding) of this pyrene derivative in the solid state results in a change of the photoluminescence from yellow to green. Subsequent exposure to water vapor induces recovery of the initial yellow photoluminescence. The color change is reversible through at least ten cycles. It is also demonstrated that this compound can be applied as a mechano‐sensing material in frictional wear testing for grease, owing to its immiscibility in non‐polar solvents and its non‐crystalline behavior. Transmission electron microscope and atomic force microscope observations of samples prepared from dilute aqueous solutions of the pyrene derivative on suitable substrates, together with dynamic light scattering measurements for the compound in aqueous solution, indicate that this amphiphilic dumbbell‐shaped molecule forms micelles in water.  相似文献   

7.
High quality opal‐like photonic crystals containing graphene are fabricated using evaporation‐driven self‐assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle‐dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time‐temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution‐processable nanomaterial based photonics.  相似文献   

8.
Cephalopods, such as squid, cuttlefish, and octopuses, use an array of responsive absorptive and photonic dermal structures to achieve rapid and reversible color changes for spectacular camouflage and signaling displays. Challenges remain in designing synthetic soft materials with similar multiple and dynamic responsivity for the development of optical sensors for the sensitive detection of mechanical stresses and strains. Here, a high dynamic range mechano‐imaging (HDR‐MI) polymeric material integrating physical and chemical mechanochromism is designed providing a continuous optical read‐out of strain upon mechanical deformation. By combining a colloidal photonic array with a mechanically responsive dye, the material architecture significantly improves the mechanochromic sensitivity, which is moreover readily tuned, and expands the range of detectable strains and stresses at both microscopic and nanoscopic length scales. This multi‐functional material is highlighted by creating detailed HDR mechanographs of membrane deformation and around defects using a low‐cost hyperspectral camera, which is found to be in excellent agreement with the results of finite element simulations. This multi‐scale approach to mechano‐sensing and ‐imaging provides a platform to develop mechanochromic composites with high sensitivity and high dynamic mechanical range.  相似文献   

9.
Multicolor luminescent films have great potential for use in optoelectronics, solid‐state light‐emitting materials, and optical devices. This work describes a systematic investigation of the ordered assembly of two‐ (blue/green, blue/orange, red/blue, red/green) and three‐color (blue/red/green) light‐emitting ultrathin films (UTFs) by using different photofunctional anions [bis(N‐methylacridinium)@polyvinylsulfonate ion pairs and anionic derivatives of poly(p‐phenylene), poly(phenylenevinylene), and poly(thiophene)] and Mg‐Al‐layered double hydroxide nanosheets as building blocks. The rational combination of luminescent components affords precise control of the emission wavelengths and intensity, and multicolored luminescent UTFs can be precisely tailored covering most of the visible spectral region. The assembly process of the UTFs and their luminescence properties, as monitored by UV–vis absorption and fluorescence spectroscopy, resulted in a gradual change in luminescence color in the selected light‐emitting spectral region upon increasing the number of deposition cycles. X‐ray diffraction demonstrates that the UTFs are periodic layered structures involving heterogeneous superlattices associated with individual photoactive anion–LDH units. These UTFs also exhibit well‐defined multicolor polarized fluorescence with high polarization anisotropy, and the emissive color changes with polarization direction. Therefore, this work provides a way of fabricating heterogeneous UTFs with tunable‐color luminescence as well as polarized multicolor emission, which have potential applications in the areas of light displays and optoelectronic devices.  相似文献   

10.
Solid‐state luminescence is an important strategy for color generation via molecular self‐assembly. Here, a new luminogen (AT3EMIS) containing both a rigid chromophore and a flexible dendron is designed and synthesized for multicolor emission. The emission energy of the target material is precisely controlled by adjusting three different columnar arrays through thermal and mechanical stimulation. With well‐defined supramolecular organizations in different length scales, the luminescent properties of the light switch can be tuned.  相似文献   

11.
Development of new aggregation‐induced emission (AIE) luminogens has been a hot research topic because they thoroughly solve the notorious aggregation‐caused quenching effect confronted in conventional fluorogens and their promising applications in, for example, organic light‐emitting diodes, chemo‐ and biosensors and bioimaging. Many AIE luminogens (AIEgens) have been prepared but most of them are silole, tetraphenylethene, distyrylanthracene, and their derivatives. In this work, based on the skeleton of tetraphenylpyrazine (TPP), a new AIEgen, named TPP‐PDCV, is generated by functionalizing TPP with malonitrile group. TPP‐PDCV can serve as a sensitive ratiometric fluorescent probe for detecting hydrogen sulfide with high speciality and low detection limit of down to 0.5 × 10?6m . The mechanism for such detection is fully investigated and deciphered. Unlike most reported mechanochromic AIEgens, which undergo turn‐off or ‐on emission or emission bathochromic shift in the presence of external stimuli, TPP‐PDCV exhibits an abnormal and reversible mechanochromism with hypsochromic effect. These indicate that TPP‐PDCV possesses a huge potential for high‐tech applications through rational modification of TPP core.  相似文献   

12.
Two of the most persistent challenges for the high‐end application of luminescent lanthanide (Ln) compounds are a low quantum yield and luminescence quenching caused by a liquid medium. In this work, a type of polymeric hydrogen‐bonded heptazine framework is developed incorporating trivalent europium ions (P‐HHF‐Eu) via a low‐cost and facile low‐temperature thermal condensation reaction. Structural characterization clearly reveals that the solid‐phase pyrolyzation reaction results in the formation of P‐HHF‐Eu. Using time‐resolved and steady state photoluminescence (PL) spectroscopies, the photophysics and photochemistry of P‐HHF‐Eu at different hydration degrees are investigated and the role of hydrogen bonding in the significant enhancement of the emission properties is demonstrated. Furthermore, the P‐HHF‐Eu particles suspended in polyvinyl alcohol hydrogel exhibit excellent luminescence stability with a high PL quantum yield of up to ≈46% and wavelength responsive color‐tunable emission, which holds potential for security applications.  相似文献   

13.
Modulation of luminescent color or intensity by varying external stimuli, such as temperature, light, ion concentration, etc., has received increasing attention recently because of numerous applications such as sensors, bioanalysis, optical imaging and memories. For instance, electrically induced luminescent switching — electroluminochromism (ELC) — is one of the most powerful and promising approaches to implement controllable emission due to its facile and precise operation. Recent years have witnessed significant advances in ELC research in the context of materials development and device optimizations. This feature article reviews the fundamentals and recent progress in this emerging field, focusing on working mechanisms, materials, devices and performance improvements. Perspectives for future ELCs are also outlined.  相似文献   

14.
Light‐weight, power‐free mechanochromic sensors that can change and record the reflective color depending on the magnitude and rate of the applied force are fabricated from inverse opals by infiltrating the colloidal crystals of silica particles with uncrosslinked SU‐8, followed by removal of the colloidal templates. The mechanical sensing range of the materials is high, 17.6–20.4 MPa. Due to elastoplastic deformation of the SU‐8 films, the deformed structures and thus colors can be locked after the removal of the load, therefore establishing a quantitative relationship between the mechanical force and optical responses. In comparison, mechanochromic photonic gels reported in the literature typically detect force in the range of 10–100 kPa; once the load is removed, the structure and color return back to the original ones. The mechanochromic sensors are highly sensitive: the ratio of shift in the stopband wavelength to the change in applied strain is up to 5.7 nm per percent, the highest among literature. Comparison of finite element simulations with experiments confirms the elastoplastic deformation of the films and highlights that reconfiguration of pore shape under compression plays a key role in the mechanochromic response.  相似文献   

15.
Hydrogels are important functional materials useful for 3D cell culture, tissue engineering, 3D printing, drug delivery, sensors, or soft robotics. The ability to shape hydrogels into defined 3D structures, patterns, or particles is crucial for biomedical applications. Here, the rapid photodegradability of commonly used polymethacrylate hydrogels is demonstrated without the need to incorporate additional photolabile functionalities. Hydrogel degradation depths are quantified with respect to the irradiation time, light intensity, and chemical composition. It can be shown that these parameters can be utilized to control the photodegradation behavior of polymethacrylate hydrogels. The photodegradation kinetics, the change in mechanical properties of polymethacrylate hydrogels upon UV irradiation, as well as the photodegradation products are investigated. This approach is then exploited for microstructuring and patterning of hydrogels including hydrogel gradients as well as for the formation of hydrogel particles and hydrogel arrays of well‐defined shapes. Cell repellent but biocompatible hydrogel microwells are fabricated using this method and used to form arrays of cell spheroids. As this method is based on readily available and commonly used methacrylates and can be conducted using cheap UV light sources, it has vast potential to be applied by laboratories with various backgrounds and for diverse applications.  相似文献   

16.
Colloidal solutions of layered rare‐earth hydroxide nanosheets provide a simple route to deposit ultra thin luminescence films. The antireflection and antifogging properties were integrated into transparent luminescent films by the layer‐by‐layer assembly of Eu3+, Tb3+, Dy3+ doped‐hydroxocation nanosheets and negatively‐charged SiO2 nanoparticles. Resulting multifunctional films exhibited efficient red, green, and blue emissions with controllable intensity. Highly improved transmittance enabled us to display combinatorial color luminescence, which can be achieved by multiply overlapping individual films with different combinations, without significant loss of transparency. Triple overlap of red/green/blue films generated an excellent white‐light under 254 nm UV irradiation.  相似文献   

17.
This work presents a novel anticounterfeiting strategy based on a material changing its emission color in response to a change in the excitation sources—where a single ultraviolet (UV) or near‐infrared (NIR) light source are employed or simultaneously using two excitation sources (xenon lamp and NIR laser). Following this approach, various combinations of lanthanide (Ln3+)‐doped LiLuF4/LiYF4 core/shell nanoparticles are prepared, providing a promising route to design flexible nanomaterials, as well as already a small library of luminescent materials, which change color when varying the excitation source (UV, NIR or both UV and NIR). Aside from excitation source‐dependent color change, these materials additionally show excitation‐source power‐dependent color change. This work exploits the possibility of developing a new class of multimode anticounterfeit nanomaterials, with excellent performance, which would be almost impossible to mimic or replicate, providing a very high level of security.  相似文献   

18.
In solid‐state mechanochromic luminescence (ML) materials, it remains a challenge to establish the origin of fluorescence color changes upon mechanical action and to determine why only some fluorophores exhibit ML behavior. The study of mechanical properties by nanoindentation, followed by ML experiments on green‐ and cyan‐emitting polymorphs of difluoroboron avobenzone reveals that upon smearing, the plastically deformable cyan form shows a prominent color change to yellow, while in the harder green form the redshifted emission is barely detectable. Crystal structure analysis reveals the presence of slip planes in the softer cyan form that can facilitate the formation of recoverable and low energy defects in the structure. Hence, the cyan form exhibits prominent and reversible ML behavior. This suggests a potential design strategy for efficient ML materials.  相似文献   

19.
Colloidal crystals have been used for creating stimuli‐responsive photonic materials. Here, macroporous hydrogels are designed, through a simple and reproducible protocol, that rapidly and reversibly switch between highly transparent and structurally colored states. The macroporous hydrogels are prepared by film‐casting photocurable dispersions of silica particles in hydrogel‐forming resins and selectively removing silica particles. The silica particles spontaneously form a nonclose‐packed array due to repulsive interparticle interaction, which form the regular array of cavities after removal. However, the cavities are randomly collapsed by drying, losing a long‐range order and rendering the materials highly transparent. When the hydrogels are swollen by either water, ethanol, or the mixture, the regular array is restored, which develops brilliant structural colors. This switching is completed in tens of seconds and repeatable without any hysteresis. The resonant wavelength depends on the composition of the water–ethanol mixture, where the dramatic shift occurs in one‐component‐rich mixtures due to the composition of the hydrogel. Micropatterns can be designed to have distinct domains of the macroporous hydrogels, which are transparent at the dried state and disclose encrypted graphics and unique reflectance spectra at the wet state. This class of solvent‐responsive photonic hydrogels is potentially useful for alcohol sensors and user‐interactive anti‐counterfeiting materials.  相似文献   

20.
Color conversion, long‐wavelength light emission by absorbing short‐wavelength light, is an attractive approach for developing a broad‐color expression technology and is widely used in solid‐state lighting, dye‐lasers, and colorful displays. Up to now, many papers have been published reporting various mechanoluminescent materials emitting color of ultraviolet, blue, green, orange, and red. However, the strategies of previous reports have focused on color‐tuning of mechanoluminescent material itself through newly developing inorganic mechanoluminescent compounds. Here, a new strategy for the color manipulation of mechanoluminescence (ML) is introduced by physically combining fluorescent dyes with existing mechanoluminescent materials. An elastomeric zinc sulfide (ZnS) composite is prepared in a polydimethylsiloxane framework with spontaneously diffused 4‐(dicyanomethylene)‐2‐t‐butyl‐6‐(1,1,7,7‐tetramethyljulolidyl‐9‐enyl)‐4H‐pyran (DCJTB), and red luminescence by complete color conversion via DCJTB is demonstrated, which fully absorbed green ML from ZnS. Based on this approach, color‐tuning of ML from red to green is successfully achieved and color expression range is expanded by employing electroluminescence (EL). Various‐color‐emitting EL/ML electromechanical display is demonstrated using color discrepancy between DCJTB employed EL and ML. As the implementation is fairly straightforward, it is believed that present color conversion is a viable and common method to manipulate broader color expression for future ML applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号