首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wide-bandgap (WBG) perovskite solar cells (PSCs) with high performance and stability are in considerable demand to boost tandem solar cell efficiencies. Perovskite bandgap broadening results in a high barrier for enhancing the efficiency of PSCs and phase segregation in perovskite. In this study, it is shown that the residual strain is the key factor affecting the WBG perovskite device efficiency and stability. The dimethyl sulfoxide addition helps lead halide with opening the layer spacing to form intermediate phases that provide more nucleation sites to eliminate lattice mismatch with organic components, which dominates the strain effects on the WBG perovskite growth in a sequential deposition. By minimizing the strain, 1.67 and 1.77 eV nip devices with record efficiencies of 22.28% and 20.45%, respectively, can be achieved. The greatly suppressed phase segregation enables the devices with retained 90–95% of initial efficiency over 4000 h of damp stability and 80–90% of initial efficiency over 700 h of maximum-power-point (MPP) stability. Besides, the 1.67 eV pin devices can achieve a competitive 22.3% efficiency with considerable damp-heat, pre-ultraviolet (pre-UV) aging and MPP tracking stability according to IEC 61215. The final efficiency of more than 28.3% for the perovskite/Si tandem is obtained.  相似文献   

2.
Metal halide perovskites are rising as a competitive material for next‐generation light‐emitting diodes (LEDs). However, the development of perovskite LEDs is impeded by their fast carriers diffusion and poor stability in bias condition. Herein, quasi‐2D CsPbBr3 quantum wells homogeneously surrounded by inorganic crystalline Cs4PbBr6 of large bandgap are grown. The centralization of carriers in nanoregion facilitates radiative recombination and brings much enhanced luminescence quantum yield. The external quantum efficiency and luminescence intensity of the LEDs based on this nanocomposite are one order of magnitude higher than the conventional low‐dimensional perovskite. Meanwhile, the use of inorganic nanocomposite materials brings much improved device operation lifetime under constant electrical field.  相似文献   

3.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.  相似文献   

4.
With a certified efficiency as high as 25.2%, perovskite has taken the crown as the highest efficiency thin film solar cell material. Unfortunately, serious instability issues must be resolved before perovskite solar cells (PSCs) are commercialized. Aided by theoretical calculation, an appropriate multifunctional molecule, 2,2-difluoropropanediamide (DFPDA), is selected to ameliorate all the instability issues. Specifically, the carbonyl groups in DFPDA form chemical bonds with Pb2+ and passivate under-coordinated Pb2+ defects. Consequently, the perovskite crystallization rate is reduced and high-quality films are produced with fewer defects. The amino groups not only bind with iodide to suppress ion migration but also increase the electron density on the carbonyl groups to further enhance their passivation effect. Furthermore, the fluorine groups in DFPDA form both an effective barrier on the perovskite to improve its moisture stability and a bridge between the perovskite and HTL for effective charge transport. In addition, they show an effective doping effect in the HTL to improve its carrier mobility. With the help of the combined effects of these groups in DFPDA, the PSCs with DFPDA additive achieve a champion efficiency of 22.21% and a substantially improved stability against moisture, heat, and light.  相似文献   

5.
All-inorganic perovskite cesium lead iodide (CsPbI3) exhibits excellent prospects for commercial application as a light absorber in single-junction or tandem solar cells due to its outstanding thermal stability and proper bandgap. However, the device performance of CsPbI3-based perovskite solar cells (PSCs) is still restricted by the unsatisfactory crystal quality and severe non-radiative recombination. Herein, inorganic additive ammonium halides are introduced into the precursor solution to regulate the nucleation and crystallization of the CsPbI3 film by exploiting the atomic interaction between the ammonium group and the Pb–I framework. The grain boundaries and interfacial contact of the CsPbI3 film have been improved, which leads to significant suppression in the non-radiative recombination and an enhancement in the charge transport ability. With these benefits, a high efficiency of 18.7% together with an extraordinarily high fill factor of 0.83–0.84 has been achieved, comparable to the highest records reported so far. Moreover, the cell exhibits ultra-high photoelectrical stability under continuous light illumination and high bias voltage with 96% of its initial power-conversion efficiency being sustained after 2000 h operation, even superior to the world-champion CsPbI3 solar cell. The findings are promising for the development and application of all-inorganic PSCs using a simple inorganic additive strategy.  相似文献   

6.
Organic-inorganic hybrid perovskite solar cells (PSCs) have rapidly developed over the past decade and have achieved the latest certified power conversion efficiency (PCE) up to 25.5%. However, unsatisfactory long-term operational stability for these hybrid PSCs remains a huge obstacle to further development and commercialization. Herein, a unique hetero-structured CsPbI3/CaF2 perovskite/fluoride nanocomposites (PFNCs) is fabricated via a newly developed facile two-step hetero-epitaxial growth strategy to deliver efficient and ultra-stable PSCs. After being incorporated into the crystal lattice of α-phase CsPbI3 perovskite, the cubic-phase CaF2 in the resultant CsPbI3/CaF2 PFNCs can not only passivate the intrinsic defects of CsPbI3 perovskite itself but also effectively suppress the notorious ion migration in hybrid perovskite Cs0.05FA0.81MA0.14PbI2.55Br0.45 (CsFAMA) thin-films of PSCs. As such, the CsFAMA PSC devices based on CsPbI3/CaF2-deposited perovskite thin-film achieve a mean PCE of 20.45%, in sharp contrast to 19.33% of the control devices without deposition. Specifically, the CsPbI3/CaF2-deposited PSC retains 85% of its original PCE after 1000 h continuous operation at the maximum power point under AM 1.5G solar light, far better than those of the control and CsPbI3-deposited PSCs with a device T85 lifetime of 315 and 125 h, respectively.  相似文献   

7.
Operational stability of perovskite solar cells has been a challenge from the beginning of perovskite research. In general, humidity and heat are the most well‐known degradation sources for perovskites, requiring ideal design of perovskite chemistry to withstand them. Although triple‐cation perovskite (Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3) has been already introduced as the stable perovskite material, the high reactivity of methylammonium and formamidinium in the cation sites demands further modification. Herein, 1,2,4‐triazole is suggested as an effective cation solute to improve the performance and stability of perovskite solar cells. 1,2,4‐Triazole is an aromatic cation with low dipole moment that is stable under humidity and heat. It also possesses three nitrogen atoms, forming additional hydrogen bonds in the lattice, stabilizing the material. In this study, the solar cell utilizing 1,2,4‐triazole alloying achieves a power conversion efficiency of 20.9% with superior stability under extreme condition (85 °C/85% of relative humidity (RH), encapsulated) for 700 h. The 1,2,4‐triazole‐alloyed perovskite exhibits reduced trap density and film roughness and enhanced carrier lifetime with electrical conductivity, suggesting an ideal perovskite structure for efficient and stable optoelectronic applications.  相似文献   

8.
The self-assembled hole transporting molecules (SAHTMs) bearing anchoring groups have been established as the hole transporting layers (HTLs) for highly efficient p–i–n perovskite solar cells (PSCs), yet their stability and engineering at the molecular level remain challenging. A topological design of highly anisotropic aligned SAHTM-based HTLs for operationally stable PSCs that exhibit exceptional solar-to-electric power conversion efficiencies (PCEs) is demonstrated. The judiciously designed multifunctional self-assembled molecules comprise the donor–acceptor subunit for hole transporting and the phosphonic acid group for anchoring, realizing face-on π-stacking parallel to the transparent conductive oxide substrate. The high affinity of SAHTMs to the multi-crystalline perovskite thin film benefits passivating the perovskite buried interface, strengthening interfacial contact while facilitating interfacial hole transfer. Consequently, highly efficient p–i–n PSC devices are obtained with a champion PCE of 23.24% and outstanding operational stability toward various environmental factors including long-term full sunlight soaking at evaluated temperatures. Perovskite solar modules with a champion efficiency approaching 20% are also fabricated for an active device area above 17 cm2.  相似文献   

9.
Recently, perovskite solar cells (PSC) with high power‐conversion efficiency (PCE) and long‐term stability have been achieved by employing 2D perovskite layers on 3D perovskite light absorbers. However, in‐depth studies on the material and the interface between the two perovskite layers are still required to understand the role of the 2D perovskite in PSCs. Self‐crystallization of 2D perovskite is successfully induced by deposition of benzyl ammonium iodide (BnAI) on top of a 3D perovskite light absorber. The self‐crystallized 2D perovskite can perform a multifunctional role in facilitating hole transfer, owing to its random crystalline orientation and passivating traps in the 3D perovskite. The use of the multifunctional 2D perovskite (M2P) leads to improvement in PCE and long‐term stability of PSCs both with and without organic hole transporting material (HTM), 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) compared to the devices without the M2P.  相似文献   

10.
Triple cation perovskites (Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3) have received lots of attention owing to the excellent stability and photovoltaic performance. However, the development toward efficient solar cells has been significantly impeded by its intrinsic precursor instability, as well as defective crystal surface. Herein, a strategy for introducing the additive of 1,4,7,10,13,16‐hexaoxacyclooctadecane (18C6) in the precursor solution, rendering an excellent stability of more than one month, and the defect passivation effect on the crystal surface are demonstrated. In those perovskite solar cells, a power conversion efficiency of 20.73% has been achieved with a substantially improved open‐circuit voltage and fill factor. As evidenced by the density functional theory calculations, the fundamental reason relating to the enhanced performance is found to be the interaction effect between the 18C6 and cations, and in particular the formation of the 18C6/Pb complex. This finding represents an alternative strategy for achieving a stable precursor solution and efficient perovskite solar cells.  相似文献   

11.
Carbon electrode are a low‐cost and great potential strategy for stable perovskite solar cells (PSCs). However, the efficiency of carbon‐based PSCs lags far behind compared with that of state‐of‐the‐art PSCs. The poor interface contact between the carbon electrode and the underlying layer dominates the performance loss of the reported carbon‐based PSCs. In this respect, a sort of self‐adhesive macroporous carbon film is developed as counter electrode by a room‐temperature solvent‐exchange method. Via a simple press transfer technique, the carbon film can form excellent interface contact with the underlying hole transporting layer, remarkably beneficial to interface charge transfer. A power conversion efficiency of up to 19.2% is obtained for mesoporous‐structure PSCs, which is the best achieved for carbon‐based PSCs. Moreover, the device exhibits greatly improved long‐term stability. It retains over 95% of the initial efficiency after 1000 h storage under ambient atmosphere. Furthermore, after aging for 80 h under illumination and maximum power point in nitrogen atmosphere, the carbon‐based PSC retains over 94% of its initial performance.  相似文献   

12.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

13.
While there is promising achievement in terms of the power conversion efficiency (PCE) of perovskite solar cells (PSCs), long-term stability has been considered the main obstacle for their practical application. In this work, the authors demonstrate the small monomer 2-(dimethylamino) ethyl methacrylate (DMAEMA) with unsaturated carboxylic acid ester bond in the antisolvent for perovskite formation to improve the PCE and stability. The results show that DMAEMA is self-polymerized and uniformly distributed in the film, contributing to the improved crystallinity of the perovskites. Equally important, it is found that there are newly established interactions of Pb2+ and DMAEMA, and iodine and ternary amine between DMAEMA and perovskites, which improves the uniformity of the lead (II) iodide vertical distribution along with the films and thus phase stability, as well as largely decreases defects density in the film. Overall, the inverted PSCs with DMAEMA exhibit a open-circuit voltage of 1.10 V, short-circuit current of 23.86 mA cm?2, fill factor of 0.82, and finally PCE reaches 21.52%. Meanwhile, the PSC stability is significantly improved due to the inhibition of the formation of iodine, reduction of the uncoordinated Pb2+, and suppression of phase segregation.  相似文献   

14.
Hole‐transporting materials (HTMs) play a significant role in hole transport and extraction for perovskite solar cells (PeSCs). As an important type of HTMs, the spiro‐architecture‐based material is widely used as small organic HTM in PeSCs with good photovoltaic performances. The skeletal modification of spiro‐based HTMs is a critical way of modifying energy level and hole mobility. Thus, many spiro alternatives are developed to optimize the spiro‐type HTMs. Herein, a novel carbazole‐based single‐spiro‐HTM named SCZF‐5 is designed and prepared for efficient PeSCs. In addition, another single‐spiro HTM SAF‐5 with reported 10‐phenyl‐10H‐spiro[acridine‐9,9′‐fluorene] (SAF) core is also synthesized for comparison. Through varying from SAF core to SCZF core as well as comparing with the classic 9,9′‐spiro‐bifluorene, it is found that the new HTM SCZF‐5 exhibits more impressive power conversion efficiency (PCE) of 20.10% than SAF‐5 (13.93%) and the commercial HTM spiro‐OMeTAD (19.11%). On the other hand, the SCZF‐5‐based device also has better durability in lifetime testing, indicating the newly designed SCZF by integrating carbazole into the spiro concept has good potential for developing effective HTMs.  相似文献   

15.
A fully automated spray‐coated technology with ultrathin‐film purification is exploited for the commercial large‐scale solution‐based processing of colloidal inorganic perovskite CsPbI3 quantum dot (QD) films toward solar cells. This process is in the air outside the glove box. To further improve the performance of QD solar cells, the short‐chain ligand of phenyltrimethylammonium bromide (PTABr) with a benzene group is introduced to partially substitute for the original long‐chain ligands of the colloidal QD surface (namely PTABr‐CsPbI3). This process not only enhances the carrier charge mobility within the QD film due to shortening length between adjacent QDs, but also passivates the halide vacancy defects of QD by Br? from PTABr. The colloidal QD solar cells show a power conversion efficiency (PCE) of 11.2% with an open voltage of 1.11 V, a short current density of 14.4 mA cm?2, and a fill factor of 0.70. Due to the hydrophobic surface chemistry of the PTABr–CsPbI3 film, the solar cell can maintain 80% of the initial PCE in ambient conditions for one month without any encapsulation. Such a low‐cost and efficient spray‐coating technology also offers an avenue to the film fabrication of colloidal nanocrystals for electronic devices.  相似文献   

16.
Recently, there have been extensive research efforts on developing high performance organolead halide based perovskite solar cells. While most studies focused on optimizing the deposition processes of the perovskite films, the selection of the precursors has been rather limited to the lead halide/methylammonium (or formamidium) halide combination. In this work, we developed a new precursor, HPbI3, to replace lead halide. The new precursor enables formation of highly uniform formamidium lead iodide (FAPbI3) films through a one‐step spin‐coating process. Furthermore, the FAPbI3 perovskite films exhibit a highly crystalline phase with strong (110) preferred orientation and excellent thermal stability. The planar heterojunction solar cells based on these perovskite films exhibit an average efficiency of 15.4% and champion efficiency of 17.5% under AM 1.5 G illumination. By comparing the morphology and formation process of the perovskite films fabricated from the formamidium iodide (FAI)/HPbI3, FAI/PbI2, and FAI/PbI2 with HI additive precursor combinations, it is shown that the superior property of the HPbI3 based perovskite films may originate from 1) a slow crystallization process involving exchange of H+ and FA+ ions in the PbI6 octahedral framework and 2) elimination of water in the precursor solution state.  相似文献   

17.
Halide perovskites are qualified to meet the flexibility demands of optoelectronic field because of their merits of flexibility, lightness, and low cost. However, the intrinsic defects and deformation-induced ductile fracture in both perovskite and buried interface significantly restrict the photoelectric performance and longevity of flexible perovskite solar cells (PVSCs). Here, a dual-dynamic cross-linking network is schemed to boost the photovoltaic efficiency and mechanical stability of flexible PVSCs by incorporating natural polymerizable small molecule α-lipoic acid (LA). The LA therein can be autonomously ring-opening polymerized through dynamic disulfide bonds and hydrogen bonds, concurrently forming coordination bonds to interact with perovskite component. Importantly, the polymerization product can serve as efficacious passivating and toughening agents to simultaneously optimize interfacial contact, enhance perovskite crystallinity and sustain robust mechanical bendability. Subsequently, the rigid (or flexible) p-i-n device realizes a champion efficiency of 22.43% (or 19.03%) with prominent operational stability. Moreover, the dual-dynamic cross-linking network endows PVSCs with bendability and self-healing capacity, allowing the optimized devices to retain >80% efficiency after 3000 bending cycles, and subsequently restore to ≈95% of its initial efficiency under mild heat-treatment. This toughening and self-healing strategy provides a facile and efficient path to prolong operational lifetime of flexible device.  相似文献   

18.
19.
In the past decade, perovskite solar cells (PSCs) have made remarkable progress in improving power conversion efficiency (PCE). In order to further improve the photovoltaic performance and long-term stability of PSCs, the interface layer is essential. A multifunctional cross-linked polyurethane (CLPU) is designed and synthesized via the spontaneous quaternization of polyurethane and 1, 6-diiodohexane on the surface of the perovskite layer. CLPU layer cannot only effectively induce secondary crystallization and passivate the surface defects of perovskite, reduce the non-radiative recombination, but also effectively block the moisture invasion. By this strategy, Cs0.05FA0.95PbI3 PSCs with excellent reproducibility, is realized, achieving a PCE of 23.14% with an open-circuit voltage of 1.11 V, a short-circuit current density of 25.69 mA cm−2, and a fill factor of 0.81. In addition, the unencapsulated devices show enhanced stability in 35 ± 5% relative humidity (RH) near 3000 h and in 65 ± 5% RH over 700 h. This study provides valuable insights into the role of CLPU interface layer in PSCs, which are essential for the design of high-performance devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号