首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The effects of hydrogen incorporation in dilute nitride semiconductors, specifically GaAs1‐xNx, are discussed. The remarkable consequences of hydrogen irradiation include tuneable and reversible changes in the electronic, optical, structural, and electrical properties of these materials. The highly trapping‐limited diffusion of H atoms in dilute nitrides results in the formation of extremely sharp heterointerfaces between H‐containing and H‐free regions of the crystals. This, in turn, offers an unprecedented possibility to tailor the physical properties of a semiconductor chip in its growth plane with nanometer precision. A number of examples are presented and discussed.  相似文献   

2.
The La1–xCaxFe0.8Ni0.2O3–δ (0 ≤ x ≤ 0.9) system is investigated for potential application as a cathode material for intermediate temperature solid oxide fuel cells (IT‐SOFCs). A broad range of experimental techniques have been utilized in order to elucidate the characteristics of the entire compositional range. Low A‐site Ca content compositions (x ≤ 0.4) feature a single perovskite solid solution. Compositions with 40% Ca content (x = 0.4) exhibit the highest electrical and ionic conductivities of these single phase materials (250 and 1.9 × 10?3 S cm?1 at 800 °C, respectively), a level competitive with state‐of‐the‐art (La,Sr)(Fe,Co)O3. Between 40 and 50% Ca content (0.4 > x > 0.5) a solubility limit is reached and a secondary, brownmillerite‐type phase appears for all higher Ca content compositions (0.5 ≤ x ≤ 0.9). While typically seen as detrimental to electrochemical performance in cathode materials, this phase brings with it ionic conductivity at operational temperatures. This gives rise to the effective formation of pseudo‐composite materials which feature significantly enhanced performance characteristics, while also providing the closest match in thermal expansion behavior to typical electrolyte materials. This all comes with the advantage of being produced through a simple, single‐step, low‐cost production route without the issues associated with typical composite materials. The highest performing pseudo‐composite material (x = 0.5) exhibits electronic conductivity of 300–350 S cm?1 in the 600–800 °C temperature range while the best polarisation resistance (Rp) values of approximately 0.2 Ω cm2 are found in the 0.5 ≤ x ≤ 0.7 range.  相似文献   

3.
Solution‐processing hybrid metal halide perovskites are promising materials for developing flexible thin‐film devices. This work reports the substrate effects on the spin–orbit coupling (SOC) in perovskite films through thermal expansion under thermal annealing. X‐ray diffraction (XRD) measurements show that using a flexible polyethylene naphthalate (PEN) substrate introduces a smaller mechanical strain in perovskite MAPbI3?xClx films, as compared to conventional glass substrates. Interestingly, the linear/circular photoexcitation‐modulated photocurrent studies find that decreasing mechanical strain gives rise to a weaker orbit–orbit interaction toward decreasing the SOC in the MAPbI3?xClx films prepared on flexible PEN substrates relative to rigid glass substrates. Simultaneously, decreasing the mechanical strain causes a reduction in the internal magnetic parameter inside the MAPbI3?xClx films, providing further evidence to show that introducing mechanical strain can affect the SOC in hybrid perovskite films upon using flexible substrates toward developing flexible perovskite thin‐film devices. Furthermore, thermal admittance spectroscopy indicates that the trap states are increased in the perovskite films prepared on flexible PEN substrates as compared to glass substrates. Consequently, PEN and rigid glass substrates lead to shorter and longer photoluminescence lifetimes, respectively. Clearly, these findings provide an insightful understanding on substrate effects on optoelectronic properties in flexible perovskite thin‐film devices.  相似文献   

4.
Artificial synaptic devices are the essential hardware of neuromorphic computing systems, which can simultaneously perform signal processing and information storage between two neighboring artificial neurons. Emerging electrolyte‐gated transistors have attracted much attention for efficient synaptic emulation by using an addition gate terminal. Here, an electrolyte‐gated synaptic device based on the SrCoOx (SCO) films is proposed. It is demonstrated that the reversible modulation of SCO phase transforms the brownmillerite SrCoO2.5 and perovskite SrCoO3?δ , through controlling the insertion and extraction of oxygen ions with electrolyte gating. Nonvolatile multilevel conduction states can be realized in the SCO films following this route. The synaptic functions such as the long‐term potentiation and depression of synaptic weight, spike‐timing‐dependent plasticity, as well as spiking logic operations in the device are successfully mimicked. These results provide an alternative avenue for future neuromorphic devices via electrolyte‐gated transistors with oxygen ions.  相似文献   

5.
Mixed lead–tin triiodide perovskites are promising absorber materials for low bandgap bottom cells in all‐perovskite tandem photovoltaic devices. Key structural and electronic properties of the FAPb1−xSnxI3 perovskite are presented here as a function of lead:tin content across the alloy series. Temperature‐dependent photoluminescence and optical absorption measurements are used to identify changes in the bandgap and phase transition temperature. The large bandgap bowing parameter, a crucial element for the attainment of low bandgaps in this system, is shown to depend on the structural phase, reaching a value of 0.84 eV in the low‐temperature phase and 0.73 eV at room temperature. The parabolic nature of the bowing at all temperatures is compatible with a mechanism arising from bond bending to accommodate the random placement of unevenly sized lead and tin ions. Charge‐carrier recombination dynamics are shown to fall into two regimes. Tin‐rich compositions exhibit fast, monoexponential recombination that is almost temperature‐independent, in accordance with high levels of electrical doping. Lead‐rich compositions show slower, stretched‐exponential charge‐carrier recombination that is strongly temperature‐dependent, in accordance with a multiphonon assisted process. These results highlight the importance of structure and composition for control of bandgap bowing and charge‐carrier recombination mechanisms in low bandgap absorbers for all‐perovskite tandem solar cells.  相似文献   

6.
The fabrication of high‐quality cesium (Cs)/formamidinium (FA) double‐cation perovskite films through a two‐step interdiffusion method is reported. Csx FA1‐x PbI3‐y(1‐x )Bry(1‐x ) films with different compositions are achieved by controlling the amount of CsI and formamidinium bromide (FABr) in the respective precursor solutions. The effects of incorporating Cs+ and Br? on the properties of the resulting perovskite films and on the performance of the corresponding perovskite solar cells are systematically studied. Small area perovskite solar cells with a power conversion efficiency (PCE) of 19.3% and a perovskite module (4 cm2) with an aperture PCE of 16.4%, using the Cs/FA double cation perovskite made with 10 mol% CsI and 15 mol% FABr (Cs0.1FA0.9PbI2.865Br0.135) are achieved. The Cs/FA double cation perovskites show negligible degradation after annealing at 85 °C for 336 h, outperforming the perovskite materials containing methylammonium (MA).  相似文献   

7.
Distinct properties of multiple phases of vanadium oxide (VOx) render this material family attractive for advanced electronic devices, catalysis, and energy storage. In this work, phase boundaries of VOx are crossed and distinct electronic properties are obtained by electrochemically tuning the oxygen content of VOx thin films under a wide range of temperatures. Reversible phase transitions between two adjacent VOx phases, VO2 and V2O5, are obtained. Cathodic biases trigger the phase transition from V2O5 to VO2, accompanied by disappearance of the wide band gap. The transformed phase is stable upon removal of the bias while reversible upon reversal of the electrochemical bias. The kinetics of the phase transition is monitored by tracking the time‐dependent response of the X‐ray absorption peaks upon the application of a sinusoidal electrical bias. The electrochemically controllable phase transition between VO2 and V2O5 demonstrates the ability to induce major changes in the electronic properties of VOx by spanning multiple structural phases. This concept is transferable to other multiphase oxides for electronic, magnetic, or electrochemical applications.  相似文献   

8.
SiOx‐containing graphite composites have aroused great interests as the most promising alternatives for practical application in high‐performance lithium‐ion batteries. However, limited loading amount of SiOx on the surface of graphite and some inherent disadvantages of SiOx such as huge volume variation and poor electronic conductivity result in unsatisfactory electrochemical performance. Herein, a novel and facile fabrication approach is developed to synthesize high‐performance SiOx/C composites with graphite‐like structure in which SiOx particles are dispersed and anchored in the carbon materials by restoring original structure of artificial graphite. The multicomponent carbon materials are favorable for addressing the disadvantages of SiOx‐based anodes, especially for the formation of stable solid electrolyte interphase, maintaining structural integrity of electrode materials and improving electrical conductivity of electrode. The resultant SiOx/C anodes demonstrate high reversible capacities (645 mA h g?1), excellent cycling stability (≈90% capacity retention for 500 cycles), and superior rate capabilities. Even at high pressing density (1.3 g cm?3), SiOx/C anodes still present superior cycling performance due to the high tap density and structural integrity of electrode materials. The proposed synthetic method can also be developed to address other anode materials with inferior electronic conductivity and huge volume variation.  相似文献   

9.
Solar‐to‐hydrogen (STH) conversion through unassisted artificial photosynthesis (APS) devices is one of the promising and environmentally friendly strategies for sustainable development. However, the practical large‐scale application of the unassisted APS devices is impeded by the need for expensive noble metal‐based catalysts in photovoltaics and/or electrolyzers. Herein, well‐aligned 2D NixSy nanowalls (2D NixSy NWs) on a 3D nitrogen‐doped graphene foam (3D NGF) are synthesized and further employed it in unassisted APS. Due to the positive synergistic effect between the highly electrocatalytic activity of NixSy NW and excellent conductivity of NGF, this low cost material of (2D/3D) NixSy NW/NGF is highly efficient as a multifunctional catalyst in various applications: a counterelectrode for dye‐sensitized solar cell (DSSC) and a “bifunctional” electrocatalyst for oxygen and hydrogen evolution for electrocatalytic overall water splitting. Furthermore, three NixSy NW/NGF‐based DSSCs as a tandem cell for unassisted solar‐driven overall water splitting is connected, using NixSy NW/NGF itself on nickel foams as the anode and cathode. Impressively, such integrated photovoltaic‐electrolyzer APS device can achieve an STH efficiency of 3.2% with an excellent stability and low cost. This work opens an avenue to advanced multifunctional materials for the low‐cost and unassisted solar‐driven overall water splitting.  相似文献   

10.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.  相似文献   

11.
Li‐ion batteries are omnipresent in consumer electronics and are seen as the most promising technology for electric vehicles. Na‐ion batteries have emerged as viable and cheaper alternatives for stationary applications where Li‐ion batteries are too expensive. However, the larger size of sodium ion compared to lithium makes traditional positive materials for Li‐ion batteries not always suitable for the reversible insertion of sodium ions. Herein, a microwave‐assisted solution synthesis of NaFeF3 perovskite nanoparticles from presynthesized rutile FeF2 colloidal particles, sodium ethoxide, and ammonium fluoride is presented. This NaFeF3 material shows a reversible electrochemical activity of 1Na or 1Li per iron with low polarization and excellent capacity retention after 100 cycles. The unexpected reversible insertion of both sodium and lithium ions, herein studied through ex situ and operando X‐ray diffraction measurements, is attributed to a kinetic stabilization of corner‐shared cubic AxFeF3 (A = Li, Na) frameworks along the cycles involving low volume change without high thermodynamic cost as supported by a polymorphism theoretical analysis.  相似文献   

12.
SnSx (x = 1, 2) compounds are composed of earth‐abundant elements and are nontoxic and low‐cost materials that have received increasing attention as energy materials over the past decades, owing to their huge potential in batteries. Generally, SnSx materials have excellent chemical stability and high theoretical capacity and reversibility due to their unique 2D‐layered structure and semiconductor properties. As a promising matrix material for storing different alkali metal ions through alloying/dealloying reactions, SnSx compounds have broad electrochemical prospects in batteries. Herein, the structural properties of SnSx materials and their advantages as electrode materials are discussed. Furthermore, detailed accounts of various synthesis methods and applications of SnSx materials in lithium‐ion batteries, sodium‐ion batteries, and other new rechargeable batteries are emphasized. Ultimately, the challenges and opportunities for future research on SnSx compounds are discussed based on the available academic knowledge, including recent scientific advances.  相似文献   

13.
A simple, solution‐processed route to the development of MoOx thin‐films using oxomolybdate precursors is presented. The chemical, structural, and electronic properties of these species are characterized in detail, within solution and thin‐films, using electrospray ionization mass spectrometry, grazing angle Fourier transform infrared spectroscopy, thermogravimetric analysis, atomic force microscopy, X‐ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy. These analyses show that under suitable deposition conditions the resulting solution processed MoOx thin‐films possess the appropriate morphological and electronic properties to be suitable for use in organic electronics. This is exemplified through the fabrication of poly(3‐hexylthiophene):[6,6]‐phenyl C61 butyric acid methyl ester (P3HT:PC61BM) bulk heterojunction (BHJ) solar cells and comparisons to the traditionally used poly(3,4‐ethyldioxythiophene)/poly(styrenesulfonate) anode modifying layer.  相似文献   

14.
Gas sponges capable of absorbing, storing, and releasing ions in a reversible manner are in high demand for advanced electronics, energy devices, and sensors. Here, it is shown that brownmillerite BaInO2.5 epitaxial films exhibit the capability to act as solid-state catalytic hydrogen sponges at a remarkably low temperature (≈100 °C). Compared to sintered pellets with random crystallographic orientations and many defects, BaInO2.5 epitaxial films give three orders of magnitude higher conductivity of hydrogen ions, which can be linked to the presence of well-ordered 1D channels and lack of grain boundaries and other defects. Using scanning transmission electron microscopy, it is shown that hydrogen ions can be stored near InO4 tetrahedral layers of brownmillerite without destroying the parent framework. The high performance and reproducibility of the BaInO2.5 epitaxial films coupled with ultralow power consumption make them ideal candidates for neuromorphic devices and beyond.  相似文献   

15.
Laminated multilayers of perovskite films with different optical and electronic characteristics will easily realize high‐performance optoelectronic devices because it is widely demonstrated that differential distribution of film properties in the vertical direction of devices plays particularly important roles in device performance. However, the existing laminated perovskite films are hardly prepared by a solution process because there is no solvent with sufficient selectivity of solubility for different perovskite materials. Here, it is demonstrated that aniline (AN) has a largely different solubility toward the perovskite MAPbI3 and the MAPbI3 blend with an additive of hydrochloride diethylammonium chloride. By using AN as the solvent in the perovskite precursor solution, two laminated perovskite layers with different crystal size and optical and electrical characteristics are achieved. Inverted perovskite solar cells with the laminated films as active layers achieve an averaged power conversion efficiency of 20.65% originating from the high VOC 1.112 V and fill factor of 80.8%. The devices maintain 98% efficiency after 400 h under 65% RH. This work provides a very simple and feasible method for production of laminated perovskite films to achieve high‐performance perovskite solar cells.  相似文献   

16.
Complex oxides with perovskite structure are the ideal arena to study a plethora of physical properties including superconductivity, ferromagnetism, ferroelectricity, piezoelectricity and more. Among them, transition metal oxides are especially relevant since they present large electronic correlations leading to a strong competition between lattice, charge, spin, and orbital degrees of freedom. In particular, manganese perovskites oxides exhibit half‐metallic character and colossal magnetoresistive response rendering them as the ideal materials to develop novel concepts of oxide‐electronic devices and for the study of fundamental physical interactions. Due to the close similarity between kinetic energy of charge carriers and Coulomb repulsion, tiny perturbations caused by small changes in temperature, magnetic or electric fields, strain and so forth may drastically modify the magnetic and transport properties of these materials. In particular clarifying the role of interfacial strain in manganite thin films is interesting not only for device applications but also for basic understanding of physical interactions. A better comprehension of such strongly correlated systems might lead to control the different degrees of freedom in a near future contributing to the development of the so called orbitronics, i.e. controlling and modifying at will the orbital orientation of the 3d levels in transition metals. Here we reveal the importance of interfacial strain in high quality epitaxial thin films of La2/3Ca1/3MnO3 (LCMO), grown on top of SrTiO3 (STO) and NdGaO3 (NGO) (001)‐oriented substrates. We show that in such systems interfacial strain due to lattice mismatch lifts the degeneracy of the eg and t2g orbitals close to the film/substrate interface inducing Jahn‐Teller like distortions and promoting selective orbital occupancy and the appearance of an orbital glass insulating state in an otherwise ferromagnetic metallic material. These results highlight the role of strain and identify it as a key parameter in orbital control.  相似文献   

17.
Solution‐processable hybrid perovskite solar cells are a new member of next generation photovoltaics. In the present work, a low‐temperature two‐step dipping method is proposed for the fabrication of CH3NH3PbI3‐xClx perovskite films on the indium tin oxide glass/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) substrate. The bandgaps of the CH3NH3PbI3‐xClx perovskite films are tuned in the range between 1.54 and 1.59 eV by adjusting the PbCl2 mole fraction (nCl/(nCl + nI)) in the initial mixed precursor solution from 0.10 to 0.40. The maximum chlorine mole fraction measured by a unique potentiometric titration method in the produced CH3NH3PbI3‐xClx films can be up to 0.220 ± 0.020 (x = 0.660 ± 0.060), which is much higher than that produced by a one‐step spin‐coating method (0.056 ± 0.015, x = 0.17 ± 0.04). The corresponding solar cell with the CH3NH3PbI2.34±0.06Cl0.66±0.06 perovskite film sandwiched between PEDOT:PSS and C60 layers exhibits a power conversion efficiency as high as 14.5%. Meanwhile, the open‐circuit potential (Voc) of the device reaches 1.11 V, which is the highest Voc reported in the perovskite solar cells fabricated on PEDOT:PSS so far.  相似文献   

18.
Substantial achievements have been made in green and red perovskite light emitting diodes (PeLEDs) recently. However, blue PeLEDs still lag behind with much lower performances. One of the main reasons is the mass undesirable nonradiative recombination at interfaces and within the perovskite films. In this work, an efficient hole transport bi‐layer structure composed of PSSNa and NiOx is demonstrated to simultaneously inhibit the nonradiative decays between NiOx and perovskite films by reducing NiOx surface defects and improving quasi‐2D perovskite thin film quality by minimizing its pin‐holes and reducing the film roughness. The results show that the dipole feature of PSSNa improves the hole transportation and thus PeLED performances. Moreover, by introducing KBr into the perovskite, its film quality improves and trap states reduce. Eventually, the blue PeLEDs is achieved with a very low turn‐on voltage of 3.31 V accompanied with an external quantum efficiency of 1.45% and a remarkable luminance of 4359 cd m‐2. With further optimization of the perovskite precursor concentration, the highest luminance reaches 5737 cd m‐2, which represents the brightest blue PeLEDs reported to date as far as it is known. Furthermore, the devices also show better spectral stability and operation lifetime as compared to other blue PeLEDs.  相似文献   

19.
All‐inorganic halide perovskite materials are regarded as promising materials in information display applications owing to their tunable color, narrow emission peak, and easy processability. However, the photoluminescence (PL) stability of halide perovskite films is still inferior due to their poor thermal stability and hygroscopic properties. Herein, all‐inorganic perovskite films are prepared through vacuum thermal deposition method to enhance thermal and hygroscopic stability. By intentionally adding extra bromide source, a structure of CsPbBr3 nanocrystals embedded in a CsPb2Br5 matrix (CsPbBr3/CsPb2Br5) is formed via an air exposure process, leading to impressive PL stability in ambient atmosphere. In addition, the as‐fabricated CsPbBr3/CsPb2Br5 structure shows enhanced PL intensity due to the dielectric confinement. The CsPbBr3/CsPb2Br5 structure film can almost reserve its initial PL intensity after four months, even stored in ambient atmosphere. The PL intensity for CsPbBr3/CsPb2Br5 films vanishes at elevated temperature and recovers by cooling down in a short time. The reversible PL conversion process can be repeated over hundreds of times. Based on the reversible PL property, prototype thermal‐driven information display devices are demonstrated by employing heating circuits on flexible transparent substrates. These robust perovskite films with reversible PL characteristics promise an alternative solid‐state emitting display.  相似文献   

20.
2D ferromagnetic semiconductors are key to next-generation spintronic devices in the post-Moore era. The combination of ferromagnetic and optoelectronic properties offers exciting opportunities for advanced multifunctional devices in spin-optoelectronic applications. Herein, the authors synthesize 2D van der Waals (vdW) CoxSn1-xS with ferromagnetism and photoresponse through a bottom-up reaction, which has a high yield compared to typical mechanical exfoliation. Ferromagnetic ordering is realized in 2D vdW semiconductor SnS by Co doping at the Sn sites. Magnetic properties are thoroughly studied at different doping concentrations, and first-principles calculations are further performed to reveal the magnetism origin and spin interactions. In particular, a low Gilbert damping of 1.69 × 10−3 is obtained in vdW CoxSn1−xS through ferromagnetic resonance. In addition, photodetectors based on CoxSn1−xS quantum dots are demonstrated. These studies establish a promising semiconductor with both ferromagnetic ordering and photoelectric response, which provides unprecedented opportunities in spintronic-photonic integrated applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号