共查询到20条相似文献,搜索用时 0 毫秒
1.
The charge transport and recombination in white‐emitting polymer light‐ emitting diodes (PLEDs) are studied. The PLED investigated has a single emissive layer consisting of a copolymer in which a green and red dye are incorporated in a blue backbone. From single‐carrier devices the effect of the green‐ and red‐emitting dyes on the hole and electron transport is determined. The red dye acts as a deep electron trap thereby strongly reducing the electron transport. By incorporating trap‐assisted recombination for the red emission and bimolecular Langevin recombination for the blue emission, the current and light output of the white PLED can be consistently described. The color shift of single‐layer white‐emitting PLEDs can be explained by the different voltage dependencies of trap‐assisted and bimolecular recombination. 相似文献
2.
Stephan van Reenen René A. J. Janssen Martijn Kemerink 《Advanced functional materials》2012,22(21):4547-4556
The operational mechanism of polymer light‐emitting electrochemical cells (LECs) in sandwich geometry is studied by admittance spectroscopy in combination with numerical modeling. At bias voltages below the bandgap of the semiconducting polymer, this allows the determination of the dielectric constant of the active layer, the conductivity of mobile ions, and the thickness of the electric double layers. At bias voltages above the bandgap, p–n junction formation gives rise to an increase in capacitance at intermediate frequencies (≈10 kHz). The time and voltage dependence of this junction are successfully studied and modeled. It is shown that impedance measurements cannot be used to determine the junction width. Instead, the capacitance at intermediate biases corresponds to a low‐conductivity region that can be significantly wider than the recombination zone. Finally, the long settling time of sandwich polymer LECs is shown to be due to a slow process of dissociation of salt molecules that continues after the light‐emitting p–n junction has formed. This implies that in order to significantly decrease the response‐time of LECs an electrolyte/salt combination with a minimal ion binding energy must be used. 相似文献
3.
Herman T. Nicolai André Hof Jasper L. M. Oosthoek Paul W. M. Blom 《Advanced functional materials》2011,21(8):1505-1510
The charge transport in blue light‐emitting polyspirobifluorene is investigated by both steady‐state current‐voltage measurements and transient electroluminescence. Both measurement techniques yield consistent results and show that the hole transport is space‐charge limited. The electron current is found to be governed by a high intrinsic mobility in combination with electron traps. Numerical simulations on light‐emitting diodes reveal a shift in the recombination zone from the cathode to the anode with increasing bias. 相似文献
4.
A study of hybrid light‐emitting diodes (HyLEDs) fabricated with and without solution‐processible Cs2CO3 and Ba(OH)2 inorganic interlayers is presented. The interlayers are deposited between a zinc oxide electron‐injection layer and a fluorescent emissive polymer poly(9‐dioctyl fluorine–alt‐benzothiadiazole) (F8BT) layer, with a thermally evaporated MoO3/Au layer used as top anode contact. In comparison to Cs2CO3, the Ba(OH)2 interlayer shows improved charge carrier balance in bipolar devices and reduced exciton quenching in photoluminance studies at the ZnO/Ba(OH)2/F8BT interface compared to the Cs2CO3 interlayer. A luminance efficiency of ≈28 cd A?1 (external quantum efficiency (EQE) ≈ 9%) is achieved for ≈1.2 μm thick single F8BT layer based HyLEDs. Enhanced out‐coupling with the aid of a hemispherical lens allows further efficiency improvement by a factor of 1.7, increasing the luminance efficiency to ≈47cd A?1, corresponding to an EQE of 15%. The photovoltaic response of these structures is also studied to gain an insight into the effects of interfacial properties on the photoinduced charge generation and back‐recombination, which reveal that Ba(OH)2 acts as better hole blocking layer than the Cs2CO3 interlayer. 相似文献
5.
R. N. Bera N. Cumpstey P. L. Burn I. D. W. Samuel 《Advanced functional materials》2007,17(7):1149-1152
Intermolecular interactions play a crucial role in the performance of organic light‐emitting diodes (OLEDs). Here we report the photophysical and electroluminescence properties of a fac‐tris(2‐phenylpyridyl)iridium(III ) cored dendrimer in which highly branched biphenyl dendrons are used to control the intermolecular interactions. The presence of fluorene surface groups improves the solubility and enhances the efficiency of photoluminescence, especially in the solid state. The emission peak of the dendrimer is around 530 nm with a PL quantum yield of 76 % in solution and 25 % in a film. The photophysical properties of this dendrimer are compared with a similar dendrimer with the same structure but without the fluorene surface groups. Dendrimer LEDs (DLEDs) are prepared using each dendrimer as a phosphorescent emitter blended in a 4,4′‐bis(N‐carbazolyl)biphenyl host. Device performance is improved significantly by the incorporation of an electron‐transporting layer of 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene. A peak external quantum efficiency of 10 % (38 Cd A–1) for the dendrimer without surface groups and 13 % (49.8 Cd A–1) for the dendrimer with fluorene surface groups is achieved in the bilayer LEDs. 相似文献
6.
S.‐C. Lo G.J. Richards J.P.J. Markham E.B. Namdas S. Sharma P.L. Burn I.D.W. Samuel 《Advanced functional materials》2005,15(9):1451-1458
We describe the preparation of a dendrimer that is solution‐processible and contains 2‐ethylhexyloxy surface groups, biphenyl‐based dendrons, and a fac‐tris[2‐(2,4‐difluorophenyl)pyridyl]iridium(III ) core. The homoleptic complex is highly luminescent and the color of emission is similar to the heteroleptic iridium(III ) complex, bis[2‐(2,4‐difluorophenyl)pyridyl]picolinate iridium(III ) (FIrpic). To avoid the change in emission color that would arise from attaching a conjugated dendron to the ligand, the conjugation between the dendron and the ligand is decoupled by separating them with an ethane linkage. Bilayer devices containing a light‐emitting layer comprised of a 30 wt.‐% blend of the dendrimer in 1,3‐bis(N‐carbazolyl)benzene (mCP) and a 1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene electron‐transport layer have external quantum and power efficiencies, respectively, of 10.4 % and 11 lm W–1 at 100 cd m–2 and 6.4 V. These efficiencies are higher than those reported for more complex device structures prepared via evaporation that contain FIrpic blended with mCP as the emitting layer, showing the advantage of using a dendritic structure to control processing and intermolecular interactions. The external quantum efficiency of 10.4 % corresponds to the maximum achievable efficiency based on the photoluminescence quantum yield of the emissive film and the standard out‐coupling of light from the device. 相似文献
7.
Here, controlled p‐type doping of poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV) deposited from solution using tetrafluoro‐tetracyanoquinodimethane (F4‐TCNQ) as a dopant is presented. By using a co‐solvent, aggregation in solution can be prevented and doped films can be deposited. Upon doping the current–voltage characteristics of MEH‐PPV‐based hole‐only devices are increased by several orders of magnitude and a clear Ohmic behavior is observed at low bias. Taking the density dependence of the hole mobility into account the free hole concentration due to doping can be derived. It is found that a molar doping ratio of 1 F4‐TCNQ dopant per 600 repeat units of MEH‐PPV leads to a free carrier density of 4 × 1022 m?3. Neglecting the density‐dependent mobility would lead to an overestimation of the free hole density by an order of magnitude. The free hole densities are further confirmed by impedance measurements on Schottky diodes based on F4‐TCNQ doped MEH‐PPV and a silver electrode. 相似文献
8.
Hannah L. Smith Jordan T. Dull Elena Longhi Stephen Barlow Barry P. Rand Seth R. Marder Antoine Kahn 《Advanced functional materials》2020,30(17)
n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐alt‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL. 相似文献
9.
Liang‐Jin Xu Jin‐Yun Wang Xiao‐Feng Zhu Xian‐Chong Zeng Zhong‐Ning Chen 《Advanced functional materials》2015,25(20):3033-3042
Cationic Au4Ag2 heterohexanuclear aromatic acetylides cluster complexes supported by bis(2‐diphenylphosphinoethyl)phenylphosphine (dpep) are prepared. The Au4Ag2 cluster structure originating from the combination of one anionic [Au(C≡CR)2]? with one cationic [Au3Ag2(dpep)2(C≡CR)2]3+ through the formation of Ag?acetylide η2‐bonds is highly stabilized by Au–Ag and Au–Au contacts. The Au4Ag2 alkynyl cluster complexes are moderately phosphorescent in the fluid CH2Cl2 solution, but exhibit highly intense phosphorescent emission in solid state and film. As revealed by theoretical computational studies, the phosphorescence is ascribable to significant 3[π (aromatic acetylide) → s/p (Au)] 3LMCT parentage with a noticeable Au4Ag2 cluster centered 3[d → s/p] triplet state. Taking advantage of mCP and OXD‐7 as a mixed host with 20 wt% dopant of phosphorescent Au4Ag2 cluster complex in the emitting layer, solution‐processed organic light‐emitting diodes (OLEDs) exhibit highly efficient electrophosphorescence with the maximum current, power, and external quantum efficiencies of 24.1 cd A?1, 11.6 lm W?1, and 7.0%, respectively. Introducing copper(I) thiocyanate (CuSCN) as a hole‐transporting layer onto the PEDOT:PSS hole‐injecting layer through the orthogonal solution process induces an obvious improvement of the device performance with lower turn‐on voltage and higher electroluminescent efficiency. 相似文献
10.
Stephan van Reenen Piotr Matyba Andrzej Dzwilewski René A. J. Janssen Ludvig Edman Martijn Kemerink 《Advanced functional materials》2011,21(10):1795-1802
Incorporation of ions in the active layer of organic semiconductor devices may lead to attractive device properties like enhanced injection and improved carrier transport. In this paper, we investigate the effect of the salt concentration on the operation of light‐emitting electrochemical cells, using experiments and numerical calculations. The current density and light emission are shown to increase linearly with increasing ion concentration over a wide range of concentrations. The increasing current is accompanied by an ion redistribution, leading to a narrowing of the recombination zone. Hence, in absence of detrimental side reactions and doping‐related luminescence quenching, the ion concentration should be as high as possible. 相似文献
11.
Self‐Doping Cathode Interfacial Material Simultaneously Enabling High Electron Mobility and Powerful Work Function Tunability for High‐Efficiency All‐Solution‐Processed Polymer Light‐Emitting Diodes 下载免费PDF全文
Xiaojun Yin Guohua Xie Yuhao Peng Bowen Wang Tianhao Chen Shuqi Li Wenhao Zhang Lei Wang Chuluo Yang 《Advanced functional materials》2017,27(26)
A variety of N ‐hydrogenated/N ‐methylated pyridinium salts are elaborately designed and synthesized. Thermogravimetric and X‐ray photoelectron spectra analysis indicate the intensities of the N? H covalent bonds are strengthened step‐by‐step from 3,3′‐(5′‐(3‐(pyridin‐3‐yl)phenyl)‐[1,1′:3′,1″‐terphenyl]‐3,3″‐diyl)dipyridine (Tm)‐HCl to Tm‐HBr and then Tm‐TfOH, which results in gradually improved cathode interfacial modification abilities. The larger dipole moments of N+? H containing moieties compared to those of the N+? CH3 endow them with more preferable interfacial modification abilities. Electron paramagnetic resonance signals reveal the existence of radical anions in the solid state of Tm‐TfOH, which enables its self‐doping property and high electron mobility up to 1.67 × 10?3 cm2 V?1 s?1. Using the Tm‐TfOH as the cathode interfacial layers (CILs), the phenyl‐substituted poly(para ‐phenylene vinylene)‐based all‐solution‐processed polymer light‐emitting diodes (PLEDs) achieve more preferable device performances than the poly[(9,9‐bis(3′‐(N ,N ‐dimethylamino)propyl)‐2,7‐fluorene)‐alt ‐2,7‐(9,9‐dioctylfluorene)]‐based ones, i.e., high current density of nearly 300 mA cm?2, very high luminance over 15 000 cd m?2 at a low bias of 5 V. Remarkably, the thickness of the CILs has little impact on the device performance and high efficiencies are maintained even at thicknesses up to 85 nm, which is barely realized in PLEDs with small‐molecule‐based electron transporting layers. 相似文献
12.
Seokyeong Lee Eui Hyuk Kim Seunggun Yu Hyerim Kim Chanho Park Tae Hyun Park Hyowon Han Seung Won Lee Soyeon Baek Wookyoung Jin Chong Min Koo Cheolmin Park 《Advanced functional materials》2020,30(32)
MXenes (Ti3C2) are 2D transition‐metal carbides and carbonitrides with high conductivity and optical transparency. However, transparent MXene electrodes suitable for polymer light‐emitting diodes (PLEDs) have rarely been demonstrated. With the discovery of the excellent electrical stability of MXene under an alternating current (AC), herein, PLEDs that employ MXene electrodes and exhibit high performance under AC operation (AC MXene PLEDs) are presented. The PLED exhibits a turn‐on voltage, current efficiency, and brightness of 2.1 V, 7 cd A?1, and 12 547 cd m?2, respectively, when operated under AC with a frequency of 1 kHz. The results indicate that the undesirable electric breakdown associated with heat arising from the poor interface of the MXene with a hole transport layer in the direct‐current mode is efficiently suppressed by the transient injection of carriers accompanied by the alternating change of the electric polarity under the AC, giving rise to reliable light emission with a high efficiency. The solution‐processable MXene electrode can be readily fabricated on a flexible polymer substrate, allowing for the development of a mechanically flexible AC MXene PLED with a higher performance than flexible PLEDs employing solution‐processed nanomaterial‐based electrodes such as carbon nanotubes, reduced graphene oxide, and Ag nanowires. 相似文献
13.
Light‐Emitting Diodes: Self‐Doping Cathode Interfacial Material Simultaneously Enabling High Electron Mobility and Powerful Work Function Tunability for High‐Efficiency All‐Solution‐Processed Polymer Light‐Emitting Diodes (Adv. Funct. Mater. 26/2017) 下载免费PDF全文
Xiaojun Yin Guohua Xie Yuhao Peng Bowen Wang Tianhao Chen Shuqi Li Wenhao Zhang Lei Wang Chuluo Yang 《Advanced functional materials》2017,27(26)
14.
Solution‐Processed Extremely Efficient Multicolor Perovskite Light‐Emitting Diodes Utilizing Doped Electron Transport Layer 下载免费PDF全文
Khan Qasim Baoping Wang Yupeng Zhang Pengfei Li Yusheng Wang Shaojuan Li Shuit‐Tong Lee Liang‐Sheng Liao Wei Lei Qiaoliang Bao 《Advanced functional materials》2017,27(21)
A specially designed n‐type semiconductor consisting of Ca‐doped ZnO (CZO) nanoparticles is used as the electron transport layer (ETL) in high‐performance multicolor perovskite light‐emitting diodes (PeLEDs) fabricated using an all‐solution process. The band structure of the ZnO is tailored via Ca doping to create a cascade of conduction energy levels from the cathode to the perovskite. This energy band alignment significantly enhances conductivity and carrier mobility in the CZO ETL and enables controlled electron injection, giving rise to sub‐bandgap turn‐on voltages of 1.65 V for red emission, 1.8 V for yellow, and 2.2 V for green. The devices exhibit significantly improved luminance yields and external quantum efficiencies of, respectively, 19 cd A?1 and 5.8% for red emission, 16 cd A?1 and 4.2% for yellow, and 21 cd A?1 and 6.2% for green. The power efficiencies of these multicolor devices demonstrated in this study, 30 lm W?1 for green light‐emitting PeLED, 28 lm W?1 for yellow, and 36 lm W?1 for red are the highest to date reported. In addition, the perovskite layers are fabricated using a two‐step hot‐casting technique that affords highly continuous (>95% coverage) and pinhole‐free thin films. By virtue of the efficiency of the ETL and the uniformity of the perovskite film, high brightnesses of 10 100, 4200, and 16,060 cd m?2 are demonstrated for red, yellow, and green PeLEDs, respectively. The strategy of using a tunable ETL in combination with a solution process pushes perovskite‐based materials a step closer to practical application in multicolor light‐emitting devices. 相似文献
15.
T. vanWoudenbergh J. Wildeman P.W.M. Blom J.J.A.M. Bastiaansen B.M.W. Langeveld‐Vos 《Advanced functional materials》2004,14(7):677-683
It has recently been reported that, after electrical conditioning, an ohmic hole contact is formed in poly(9,9‐dioctylfluorene) (PFO)‐based polymer light‐emitting diodes (PLED), despite the large hole‐injection barrier obtained with a poly(styrene sulfonic acid)‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT:PSS) anode. We demonstrate that the initial current at low voltages in a PEDOT:PSS/PFO‐based PLED is electron dominated. The voltage at which the hole injection is enhanced strongly depends on the electron‐transport properties of the device, which can be modified by the replacement of reactive end groups by monomers in the synthesis. Our measurements reveal that the switching voltage of the PLED is governed by the electron concentration at the PEDOT:PSS/PFO contact. The switching effect in PFO is only observed for a PEDOT:PSS hole contact and not for other anodes such as indium tin oxide or Ag. 相似文献
16.
Biwu Ma Bumjoon J. Kim Daniel A. Poulsen Stefan J. Pastine Jean M. J. Frchet 《Advanced functional materials》2009,19(7):1024-1031
Here, a new series of crosslinkable heteroleptic iridium (III) complexes for use in solution processed phosphorescent organic light emitting diodes (OLEDs) is reported. These iridium compounds have the general formula of (PPZ‐VB)2Ir(CˆN), where PPZ‐VB is phenylpyrazole (PPZ) vinyl benzyl (VB) ether; and the CˆN ligands represent a family of four different cyclometallating ligands including 1‐phenylpyrazolyl (PPZ) (1), 2‐(4,6‐difluorophenyl)pyridyl (DFPPY) (2), 2‐(p‐tolyl)pyridyl (TPY) (3), and 2‐phenylquinolyl (PQ) (4). With the incorporation of two crosslinkable VB ether groups, these compounds can be fully crosslinked after heating at 180 °C for 30 min. The crosslinked films exhibit excellent solvent resistance and film smoothness which enables fabrication of high‐performance multilayer OLEDs by sequential solution processing of multiple layers. Furthermore, the photophysical properties of these compounds can be easily controlled by simply changing the cyclometallating CˆN ligand in order to tune the triplet energy within the range of 3.0–2.2 eV. This diversity makes these materials not only suitable for use in hole transporting and electron blocking but also as emissive layers of several colors. Therefore, these compounds are applied as effective materials for all‐solution processed OLEDs with (PPZ‐VB)2IrPPZ (1) acting as hole transporting and electron blocking layer and host material, as well as three other compounds, (PPZ‐VB)2IrDFPPY ( 2 ), (PPZ‐VB)2IrTPY(3), and (PPZ‐VB)2IrPQ( 4 ), used as crosslinkable phosphorescent emitters. 相似文献
17.
Daniele Braga Nicholas C. Erickson Michael J. Renn Russell J. Holmes C. Daniel Frisbie 《Advanced functional materials》2012,22(8):1623-1631
Switching and control of efficient red, green, and blue active matrix organic light‐emitting devices (AMOLEDs) by printed organic thin‐film electrochemical transistors (OETs) are demonstrated. These all‐organic pixels are characterized by high luminance at low operating voltages and by extremely small transistor dimensions with respect to the OLED active area. A maximum brightness of ≈900 cd m?2 is achieved at diode supply voltages near 4 V and pixel selector (gate) voltages below 1 V. The ratio of OLED to OET area is greater than 100:1 and the pixels may be switched at rates up to 100 Hz. Essential to this demonstration are the use of a high capacitance electrolyte as the gate dielectric layer in the OETs, which affords extremely large transistor transconductances, and novel graded emissive layer (G‐EML) OLED architectures that exhibit low turn‐on voltages and high luminescence efficiency. Collectively, these results suggest that printed OETs, combined with efficient, low voltage OLEDs, could be employed in the fabrication of flexible full‐color AMOLED displays. 相似文献
18.
Tae‐Woo Lee Taeyong Noh Hee‐Won Shin Ohyun Kwon Jong‐Jin Park Byoung‐Ki Choi Myeong‐Suk Kim Dong Woo Shin Yong‐Rok Kim 《Advanced functional materials》2009,19(10):1625-1630
Although significant progress has been made in the development of vacuum‐deposited small‐molecule organic light‐emitting diodes (OLEDs), one of the most desired research goals is still to produce flexible displays by low‐cost solution processing. The development of solution‐processed OLEDs based on small molecules could potentially be a good approach but no intensive studies on this topic have been conducted so far. To fabricate high‐performance devices based on solution‐processed small molecules, the underlying nature of the produced films and devices must be elucidated. Here, the distinctive characteristics of solution‐processed small‐molecule films and devices compared to their vacuum‐deposited counterparts are reported. Solution‐processed blue OLEDs show a very high luminous efficiency (of about 8.9 cd A–1) despite their simplified structure. A better hole‐blocking and electron‐transporting layer is essential for achieving high‐efficiency solution‐processed devices because the solution‐processed emitting layer gives the devices a better hole‐transporting capability and more electron traps than the vacuum‐deposited layer. It is found that the lower density of the solution‐processed films (compared to the vacuum‐deposited films) can be a major cause for the short lifetimes observed for the corresponding devices. 相似文献
19.
Yu Wang Yu Teng Po Lu Xinyu Shen Pei Jia Min Lu Zhifeng Shi Bin Dong William W. Yu Yu Zhang 《Advanced functional materials》2020,30(19)
The external quantum efficiencies (EQEs) of perovskite quantum dot light‐emitting diodes (QD‐LEDs) are close to the out‐coupling efficiency limitation. However, these high‐performance QD‐LEDs still suffer from a serious issue of efficiency roll‐off at high current density. More injected carriers produce photons less efficiently, strongly suggesting the variation of ratio between radiative and non‐radiative recombination. An approach is proposed to balance the carrier distribution and achieve high EQE at high current density. The average interdot distance between QDs is reduced and this facilitates carrier transport in QD films and thus electrons and holes have a balanced distribution in QD layers. Such encouraging results augment the proportion of radiative recombination, make devices with peak EQE of 12.7%, and present a great device performance at high current density with an EQE roll‐off of 11% at 500 mA cm?2 (the lowest roll‐off known so far) where the EQE is still over 11%. 相似文献