首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CsPbX3 (X = halide, Cl, Br, or I) all‐inorganic halide perovskites (IHPs) are regarded as promising functional materials because of their tunable optoelectronic characteristics and superior stability to organic–inorganic hybrid halide perovskites. Herein, nonvolatile resistive switching (RS) memory devices based on all‐inorganic CsPbI3 perovskite are reported. An air‐stable CsPbI3 perovskite film with a thickness of only 200 nm is successfully synthesized on a platinum‐coated silicon substrate using low temperature all‐solution process. The RS memory devices of Ag/polymethylmethacrylate (PMMA)/CsPbI3/Pt/Ti/SiO2/Si structure exhibit reproducible and reliable bipolar switching characteristics with an ultralow operating voltage (<+0.2 V), high on/off ratio (>106), reversible RS by pulse voltage operation (pulse duration < 1 ms), and multilevel data storage. The mechanical flexibility of the CsPbI3 perovskite RS memory device on a flexible substrate is also successfully confirmed. With analyzing the influence of phase transition in CsPbI3 on RS characteristics, a mechanism involving conducting filaments formed by metal cation migration is proposed to explain the RS behavior of the memory device. This study will contribute to the understanding of the intrinsic characteristics of IHPs for low‐voltage resistive switching and demonstrate the huge potential of them for use in low‐power consumption nonvolatile memory devices on next‐generation computing systems.  相似文献   

2.
3D organic–inorganic and all‐inorganic lead halide perovskites have been intensively pursued for resistive switching memories in recent years. Unfortunately, instability and lead toxicity are two foremost challenges for their large‐scale commercial applications. Dimensional reduction and composition engineering are effective means to overcome these challenges. Herein, low‐dimensional inorganic lead‐free Cs3Bi2I9 and CsBi3I10 perovskite‐like films are exploited for resistive switching memory applications. Both devices demonstrate stable switching with ultrahigh on/off ratios (≈106), ultralow operation voltages (as low as 0.12 V), and self‐compliance characteristics. 0D Cs3Bi2I9‐based device shows better retention time and larger reset voltage than the 2D CsBi3I10‐based device. Multilevel resistive switching behavior is also observed by modulating the current compliance, contributing to the device tunability. The resistive switching mechanism is hinged on the formation and rupture of conductive filaments of halide vacancies in the perovskite films, which is correlated with the formation of AgIx layers at the electrode/perovskite interface. This study enriches the library of switching materials with all‐inorganic lead‐free halide perovskites and offers new insights on tuning the operation of solution‐processed memory devices.  相似文献   

3.
Despite the excellent photoelectronic properties of the all‐inorganic cesium lead iodide (CsPbI3) perovskite, which does not contain volatile and hygroscopic organic components, only a few CsPbI3 devices are developed mainly owing to the frequent formation of an undesirable yellow δ‐phase at room temperature. Herein, it is demonstrated that a small quantity of poly(ethylene oxide) (PEO) added to the precursor solution effectively inhibits the formation of the yellow δ‐phase during film preparation, and promotes the development of a black α‐phase at a low crystallization temperature. A systematic study reveals that a thin, dense, pinhole‐free CsPbI3 film is produced in the α‐phase and is stabilized with PEO that effectively reduces the grain size during crystallization. A thin α‐phase CsPbI3 film with excellent photoluminescence is successfully employed in a light‐emitting diode with an inverted configuration of glass substrate/indium tin oxide/zinc oxide/poly(ethyleneimine)/α‐CsPbI3/poly(4‐butylphenyl‐diphenyl‐amine)/WO3/Al, yielding the characteristic red emission of the perovskite film at 695 nm with brightness, external quantum efficiency, and emission band width of ≈101 cd m?2, 1.12%, and 32 nm, respectively.  相似文献   

4.
Hybrid organic–inorganic lead halide perovskite single crystal thin film (SCTF) recently has attracted enormous interest in the field of optoelectronic devices, since it efficiently resolves the trade‐off between thickness and carrier diffusion length. However, the toxicity of lead element and the instability induced by organic component still hinder its future developments. In this work, lead‐free all‐inorganic Cs3Bi2I9 SCTF with a high orientation along (00h) has been in situ grown on indium tin oxide (ITO) glass via a space‐limited solvent evaporation crystallization method. The trap density of Cs3Bi2I9 SCTF (5.7 × 1012 cm?3) is 263 folds lower than that of the polycrystalline thin film (PCTF) counterpart, together with a 5‐order‐of‐magnitude higher carrier mobility. These superior charge transfer properties enable a photoresponse on–off ratio as high as 11 000, which far surpasses that of the PCTF device by 460 folds, comparable to the lead halide perovskite. Furthermore, the Cs3Bi2I9 SCTF photodetector exhibits outstanding stability even without any encapsulation, whose initial performance is well maintained after aging 1000 h in humid air of 50% RH or continuous on–off light illumination for 20 h. This work will pave the way to produce new families of high‐performance, stable, and nontoxic perovskite SCTF for future optoelectronic applications.  相似文献   

5.
Lead halide perovskite quantum dots (QDs) possess color‐tunable and narrow‐band emissions and are very promising for lighting and display applications, but they suffer from lead toxicity and instability. Although lead‐free Bi‐based and Sn‐based perovskite QDs (CsSnX3, Cs2SnX6, and (CH3NH3)3Bi2X9) are reported, they all show low photoluminescence quantum yield (PLQY) and poor stability. Here, the synthesis of Cs3Bi2Br9 perovskite QDs with high PLQY and excellent stability is reported. Via a green and facile process using ethanol as the antisolvent, as‐synthesized Cs3Bi2Br9 QDs show a blue emission at 410 nm with a PLQY up to 19.4%. The whole series of Cs3Bi2X9 (X = Cl, Br, and I) QDs by mixing precursors can cover the photoluminescence emission range from 393 to 545 nm. Furthermore, Cs3Bi2Br9 QDs show excellent photostability and moisture stability due to the all‐inorganic nature and the surface passivation by BiOBr, which enables the one‐pot synthesis of Cs3Bi2Br9 QD/silica composite. A lead‐free perovskite white light‐emitting diode is fabricated by simply combining the composite of Cs3Bi2Br9 QD/silica with Y3Al5O12 phosphor. As a new member of lead‐free perovskite QDs, Cs3Bi2Br9 QDs open up a new route for the fabrication of optoelectronic devices due to their excellent stability and photophysical characteristics.  相似文献   

6.
Inorganic cubic CsPbI3 perovskite (α‐CsPbI3) has been widely explored for perovskite solar cells (PSCs) due to its thermal stability and suitable bandgap of 1.73 eV. However, α‐CsPbI3 usually requires high synthesis temperatures (>320 °C). Additionally, it usually undergoes phase transition to the nonperovskite structure phase (β‐CsPbI3), which results in poor photoelectric performance in devices. In this study, it is first found that the tortuous 3D CsPbI3 phase (γ‐CsPbI3) can be prepared and used for PSCs by solution process without any additive at low temperature (60 °C). The γ‐CsPbI3 exhibits suitable bandgap of 1.75 eV and favorable photoelectric properties. However, γ‐CsPbI3 is a metastable phase and easily transforms into β‐CsPbI3 in ambient moisture. In order to improve the stability of γ‐CsPbI3, calcium ions (Ca2+) with a relatively small radius of 100 pm are used to partially substitute lead ions (119 pm). This research proves that Ca2+ can effectively improve the stability of the γ‐CsPbI3 at room temperature. By optimizing the doping concentration of Ca2+ (CsPb1?xCaxI3, x is from 0% to 2%), the Ca2+‐doped γ‐CsPbI3 PSCs achieve a hysteresis‐free JV curve and a maximum power conversion efficiency (PCE) of 9.20%.  相似文献   

7.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.  相似文献   

8.
Memristive devices are the precursors to high density nanoscale memories and the building blocks for neuromorphic computing. In this work, a unique room temperature synthesized perovskite oxide (amorphous SrTiO3: a‐STO) thin film platform with engineered oxygen deficiencies is shown to realize high performance and scalable metal‐oxide‐metal (MIM) memristive arrays demonstrating excellent uniformity of the key resistive switching parameters. a‐STO memristors exhibit nonvolatile bipolar resistive switching with significantly high (103–104) switching ratios, good endurance (>106I–V sweep cycles), and retention with less than 1% change in resistance over repeated 105 s long READ cycles. Nano‐contact studies utilizing in situ electrical nanoindentation technique reveal nanoionics driven switching processes that rely on isolatedly controllable nano‐switches uniformly distributed over the device area. Furthermore, in situ electrical nanoindentation studies on ultrathin a‐STO/metal stacks highlight the impact of mechanical stress on the modulation of non‐linear ionic transport mechanisms in perovskite oxides while confirming the ultimate scalability of these devices. These results highlight the promise of amorphous perovskite memristors for high performance CMOS/CMOL compatible memristive systems.  相似文献   

9.
Cubic phase CsPbI3 (α‐CsPbI3) perovskite quantum dots (QDs) have received extensive attention due to their all‐inorganic composition and suitable band gap (1.73 eV). However, α‐CsPbI3 QDs might convert to δ‐CsPbI3 (orthorhombic phase with indirect band gap of 2.82 eV) due to easy loss of surface ligands. In addition, commonly used long‐chain ligands (oleic acid, OA, and oleylamine, OLA) hinder efficient charge transport in optoelectronic devices. In order to relieve these drawbacks, OA, OLA, octanoic acid, and octylamine are used as capping ligands for synthesizing high‐quality α‐CsPbI3 QDs. The results indicate that these QDs exhibit excellent optical properties and long‐term stability compared to QDs capped only with OA and OLA. Moreover, QDs with shorter ligands exhibit an enhanced charge transport rate, which improves the power conversion efficiency of photovoltaic devices from 7.76% to 11.87%.  相似文献   

10.
All‐inorganic metal‐halide perovskites CsPbX3 (X = Cl, Br, I) exhibit higher stability than their organic–inorganic hybrid counterparts, but the thermodynamically instable perovskite α phase at room temperature of CsPbI3 restricts the practical optoelectronic applications. Although the stabilization of α‐CsPbI3 polycrystalline thin films is extensively studied, the creation of highly crystalline micro/nanostructures of α‐CsPbI3 with large grain size and suppressed grain boundary remains challenging, which impedes the implementations of α‐CsPbI3 for lateral devices, such as photoconductor‐type photodetectors. In this work, stable α‐CsPbI3 perovskite nanowire arrays are demonstrated with large grain size, high crystallinity, regulated alignment, and position by controlling the dewetting dynamics of precursor solution on an asymmetric‐wettability topographical template. The correlation between the higher photoluminescence (PL) intensity and longer PL lifetime indicates the nanowires exhibit stable α phase and suppressed trap density. The preferential (100) orientation is characterized by discrete diffraction spots in grazing incidence wide‐angle scattering patterns, suggesting the long‐range crystallographic order of these nanowires. Based on these high‐quality nanowire arrays, highly sensitive photodetectors are realized with a responsivity of 1294 A W?1 and long‐term stability with 90% performance retention after 30‐day ambient storage.  相似文献   

11.
Multiferroics are promising for sensor and memory applications, but despite all efforts invested in their research no single‐phase material displaying both ferroelectricity and large magnetization at room‐temperature has hitherto been reported. This situation has substantially been improved in the novel relaxor ferroelectric single‐phase (BiFe0.9Co0.1O3)0.4–(Bi1/2K1/2TiO3)0.6, where polar nanoregions (PNR) transform into static‐PNR as evidenced by piezoresponse force microscopy (PFM) and simultaneously enable congruent multiferroic clusters (MFC) to emerge from inherent strongly magnetic Bi(Fe,Co)O3 rich regions as verified by magnetic force microscopy (MFM) and secondary ion mass spectrometry. The material's exceptionally large Néel temperature TN = 670 ± 10 K, as found by neutron diffraction, is proposed to be a consequence of ferrimagnetic order in MFC. On these MFC, exceptionally large direct and converse magnetoelectric (ME) coupling coefficients, α ≈ 1.0 × 10?5 s m?1 at room‐temperature, are measured by PFM and MFM, respectively. It is expected that the non‐ergodic relaxor properties which are governed by the Bi1/2K1/2TiO3 component to play a vital role in the strong ME coupling, by providing an electrically and mechanically flexible environment to MFC. This new class of non‐ergodic relaxor multiferroics bears great potential for applications. Especially the prospect of a ME nanodot storage device seems appealing.  相似文献   

12.
Memristors based on mixed anionic‐electronic conducting oxides are promising devices for future data storage and information technology with applications such as non‐volatile memory or neuromorphic computing. Unlike transistors solely operating on electronic carriers, these memristors rely, in their switch characteristics, on defect kinetics of both oxygen vacancies and electronic carriers through a valence change mechanism. Here, Pt|SrTiO3‐δ|Pt structures are fabricated as a model material in terms of its mixed defects which show stable resistive switching. To date, experimental proof for memristance is characterized in hysteretic current–voltage profiles; however, the mixed anionic‐electronic defect kinetics that can describe the material characteristics in the dynamic resistive switching are still missing. It is shown that chronoamperometry and bias‐dependent resistive measurements are powerful methods to gain complimentary insights into material‐dependent diffusion characteristics of memristors. For example, capacitive, memristive and limiting currents towards the equilibrium state can successfully be separated. The memristor‐based Cottrell analysis is proposed to study diffusion kinetics for mixed conducting memristor materials. It is found that oxygen diffusion coefficients increase up to 3 × 10–15 m2s–1 for applied bias up to 3.8 V for SrTiO3‐δ memristors. These newly accessible diffusion characteristics allow for improving materials and implicate field strength requirements to optimize operation towards enhanced performance metrics for valence change memristors.  相似文献   

13.
The two‐step conversion process consisting of metal halide deposition followed by conversion to hybrid perovskite has been successfully applied toward producing high‐quality solar cells of the archetypal MAPbI3 hybrid perovskite, but the conversion of other halide perovskites, such as the lower bandgap FAPbI3, is more challenging and tends to be hampered by the formation of hexagonal nonperovskite polymorph of FAPbI3, requiring Cs addition and/or extensive thermal annealing. Here, an efficient room‐temperature conversion route of PbI2 into the α‐FAPbI3 perovskite phase without the use of cesium is demonstrated. Using in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and quartz crystal microbalance with dissipation (QCM‐D), the conversion behaviors of the PbI2 precursor from its different states are compared. α‐FAPbI3 forms spontaneously and efficiently at room temperature from P2 (ordered solvated polymorphs with DMF) without hexagonal phase formation and leads to complete conversion after thermal annealing. The average power conversion efficiency (PCE) of the fabricated solar cells is greatly improved from 16.0(±0.32)% (conversion from annealed PbI2) to 17.23(±0.28)% (from solvated PbI2) with a champion device PCE > 18% due to reduction of carrier recombination rate. This work provides new design rules toward the room‐temperature phase transformation and processing of hybrid perovskite films based on FA+ cation without the need for Cs+ or mixed halide formulation.  相似文献   

14.
Improving the ohmic contact and interfacial morphology between an electron transport layer (ETL) and perovskite film is the key to boost the efficiency of planar perovskite solar cells (PSCs). In the current work, an amorphous–crystalline heterophase tin oxide bilayer (Bi‐SnO2) ETL is prepared via a low‐temperature solution process. Compared with the amorphous SnO2 sol–gel film (SG‐SnO2) or the crystalline SnO2 nanoparticle (NP‐SnO2) counterparts, the heterophase Bi‐SnO2 ETL exhibits improved surface morphology, considerably fewer oxygen defects, and better energy band alignment with the perovskite without sacrificing the optical transmittance. The best PSC device (active area ≈ 0.09 cm2) based on a Bi‐SnO2 ETL is hysteresis‐less and achieves an outstanding power conversion efficiency of ≈20.39%, which is one of the highest efficiencies reported for SnO2‐triple cation perovskite system based on green antisolvent. More fascinatingly, large‐area PSCs (active areas of ≈3.55 cm2) based on the Bi‐SnO2 ETL also achieves an extraordinarily high efficiency of ≈14.93% with negligible hysteresis. The improved device performance of the Bi‐SnO2‐based PSC arises predominantly from the improved ohmic contact and suppressed bimolecular recombination at the ETL/perovskite interface. The tailored morphology and energy band structure of the Bi‐SnO2 has enabled the scalable fabrication of highly efficient, hysteresis‐less PSCs.  相似文献   

15.
The development of in‐memory computing has opened up possibilities to build next‐generation non‐von‐Neumann computing architecture. Implementation of logic functions within the memristors can significantly improve the energy efficiency and alleviate the bandwidth congestion issue. In this work, the demonstration of arithmetic logic unit functions is presented in a memristive crossbar with implemented non‐volatile Boolean logic and arithmetic computing. For logic implementation, a standard operating voltage mode is proposed for executing reconfigurable stateful IMP, destructive OR, NOR, and non‐destructive OR logic on both the word and bit lines. No additional voltages are needed beyond “VP” and its negative component. With these basic logic functions, other Boolean functions are constructed within five devices in at most five steps. For arithmetic computing, the fundamental functions including an n‐bit full adder with high parallelism as well as efficient increment, decrement, and shift operations are demonstrated. Other arithmetic blocks, such as subtraction, multiplication, and division are further designed. This work provides solid evidence that memristors can be used as the building block for in‐memory computing, targeting various low‐power edge computing applications.  相似文献   

16.
Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite‐based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high‐quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament‐type switching behavior. This work elucidates the important role of processing‐dependent defects in the charge transport of hybrid perovskites and provides insights on the ion‐redistribution‐based RS in perovskite memory devices.  相似文献   

17.
The double perovskite Cs2AgBiBr6 single crystal holds great potential for detecting applications because of its low minimum detectable dose rate and toxic‐free merit. Nevertheless, the disordered arrangement of Ag+/Bi3+ usually gives rise to unexpected structural distortion and thereafter heavily influences the photoelectric properties of the Cs2AgBiBr6 single crystal. Herein, phenylethylamine bromide is demonstrated to be capable of in situ regulation of the order–disorder phase transition in the Cs2AgBiBr6 single crystal. The improved ordering extent of alternatively arranged [AgX6]5? and [BiX6]3? octahedra is theoretically and experimentally proven to decrease the defect density and suppress self‐trapped exciton formation, and thereby tune the band gap and enhance the carrier mobility, which consequently promotes its application in an X‐ray detector. The performance of a corresponding detector based on PEA‐Cs2AgBiBr6 single crystal displays superior performances, e.g., longer carrier drift distance, higher photoconductive gain, and faster current response (13 vs 3190 µs). Prominently, the as‐fabricated PEA‐Cs2AgBiBr6 single‐crystal X‐ray detector has an extremely high sensitivity with a value of 288.8 µC Gyair?1 cm?2 under a bias of 50 V (22.7 V mm?1), which largely outperforms those of their counterparts with lower ordering structure.  相似文献   

18.
It is highly desirable for all-inorganic perovskite solar cells (PVSCs) to have reduced nonideal interfacial charge recombination in order to improve the performance. Although the construction of a 2D capping layer on 3D perovskite is an effective way to suppress interfacial nonradiative recombination, it is difficult to apply it to all-inorganic perovskites because of the resistance of Cs+ cesium ions in cation exchange reactions. To alleviate this problem, a simple approach using an ultra-thin 2D perovskite to terminate CsPbI3 grain boundaries (GBs) without damaging the original 3D perovskite is developed. The 2D perovskite at the GBs not only enhances the charge-carrier extraction and transport but also effectively suppresses nonradiative recombination. In addition, because the 2D perovskite can prevent the moisture and oxygen from penetrating into the GBs and at the same time suppress the ion migration, the 2D terminated CsPbI3 films exhibit significantly improved stability against humidity. Moreover, the devices without encapsulation can retain ≈81% of its initial power conversion efficiency (PCE) after being stored at 40 ± 5% relative humidity for 84 h. The 2D-based champion device exhibits a high PCE of 18.82% with a high open-circuit voltage of 1.16 V.  相似文献   

19.
Cesium‐based inorganic perovskites, such as CsPbI2Br, are promising candidates for photovoltaic applications owing to their exceptional optoelectronic properties and outstanding thermal stability. However, the power conversion efficiency of CsPbI2Br perovskite solar cells (PSCs) is still lower than those of hybrid PSCs and inorganic CsPbI3 PSCs. In this work, passivation and n‐type doping by adding CaCl2 to CsPbI2Br is demonstrated. The crystallinity of the CsPbI2Br perovskite film is enhanced, and the trap density is suppressed after adding CaCl2. In addition, the Fermi level of the CsPbI2Br is changed by the added CaCl2 to show heavy n‐type doping. As a result, the optimized CsPbI2Br PSC shows a highest open circuit voltage of 1.32 V and a record efficiency of 16.79%. Meanwhile, high air stability is demonstrated for a CsPbI2Br PSC with 90% of the initial efficiency remaining after more than 1000 h aging in air.  相似文献   

20.
All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride–trifluoroethylene (P(VDF‐TrFE)) and n‐type semiconducting [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF‐TrFE) matrix. Highly conducting poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/Ioff ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (?r ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号