首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Printing semiconductor devices under ambient atmospheric conditions is a promising method for the large‐area, low‐cost fabrication of flexible electronic products. However, processes conducted at temperatures greater than 150 °C are typically used for printed electronics, which prevents the use of common flexible substrates because of the distortion caused by heat. The present report describes a method for the room‐temperature printing of electronics, which allows thin‐film electronic devices to be printed at room temperature without the application of heat. The development of π‐junction gold nanoparticles as the electrode material permits the room‐temperature deposition of a conductive metal layer. Room‐temperature patterning methods are also developed for the Au ink electrodes and an active organic semiconductor layer, which enables the fabrication of organic thin‐film transistors through room‐temperature printing. The transistor devices printed at room temperature exhibit average field‐effect mobilities of 7.9 and 2.5 cm2 V?1 s?1 on plastic and paper substrates, respectively. These results suggest that this fabrication method is very promising as a core technology for low‐cost and high‐performance printed electronics.  相似文献   

2.
A laser‐based patterning technique—compatible with flexible, temperature‐sensitive substrates—for the production of large area reduced graphene oxide micromesh (rGOMM) electrodes is presented. The mesh patterning can be accurately controlled in order to significantly enhance the electrode transparency, with a subsequent slight increase in the sheet resistance, and therefore improve the tradeoff between transparency and conductivity of reduced graphene oxide (rGO) layers. In particular, rGO films with an initial transparency of ≈20% are patterned, resulting in rGOMMs films with a ≈59% transmittance and a sheet resistance of ≈565 Ω sq?1, that is significantly lower than the resistance of ≈780 Ω sq?1, exhibited by the pristine rGO films at the same transparency. As a proof‐of‐concept application, rGOMMs are used as the transparent electrodes in flexible organic photovoltaic (OPV) devices, achieving power conversion efficiency of 3.05%, the highest ever reported for flexible OPV devices incorporating solution‐processed graphene‐based electrodes. The controllable and highly reproducible laser‐induced patterning of rGO hold enormous promise for both rigid and flexible large‐scale organic electronic devices, eliminating the lag between graphene‐based and indium–tin oxide electrodes, while providing conductivity and transparency tunability for next generation flexible electronics.  相似文献   

3.
Epidermal electronics are extensively explored as an important platform for future biomedical engineering. Epidermal devices are typically fabricated using high‐cost methods employing complex vacuum microfabrication processes, limiting their widespread potential in wearable electronics. Here, a low‐cost, solution‐based approach using electroconductive reduced graphene oxide (RGO) sheets on elastic and porous poly(dimethylsiloxane) (PDMS) thin films for multifunctional, high‐performance, graphene‐based epidermal bioelectrodes and strain sensors is presented. These devices are fabricated employing simple coatings and direct patterning without using any complicated microfabrication processes. The graphene bioelectrodes show a superior stretchability (up to 150% strain), with mechanical durability up to 5000 cycles of stretching and releasing, and low sheet resistance (1.5 kΩ per square), and the graphene strain sensors exhibit a high sensitivity (a gauge factor of 7 to 173) with a wide sensing range (up to 40% strain). Fully functional applications of dry bioelectrodes in monitoring human electrophysiological signals (i.e., electrocardiogram, electroencephalography, and electromyogram) and highly sensitive strain sensors for precise detection of large‐scale human motions are demonstrated. It is believed that our unique processing capability and multifunctional device platform based on RGO/porous PDMS will pave the way for low‐cost processing and integration of 2D materials for future wearable electronic skin.  相似文献   

4.
The use of conducting liquids with high electrical conductivity, such as eutectic gallium–indium (EGaIn), has great potential in electronics applications requiring stretchability and deformability beyond conventional flexible electronics relying on solid conductors. An advanced liquid metal thin‐line patterning process based on soft lithography and a compatible vertical integration technique are presented that enable size‐scalable and high‐density EGaIn‐based, soft microelectronic components and circuits. The advanced liquid metal thin‐line patterning process based on poly(dimethylsiloxane) (PDMS) substrates and soft lithography techniques allows for simultaneous patterning of uniform and residue‐free EGaIn lines with line width from single micrometers to several millimeters at room temperature and under ambient pressure. Using this fabrication technique, passive electronic components and circuits are investigated under elastic deformations using numerical and experimental approaches. In addition, soft through‐PDMS vias with high aspect ratio are demonstrated for multilayer interconnections in 2.5D and 3D integration approaches. To highlight the system‐level potential of the patterning technique, a chemical sensor based on an integrated LC resonance circuit with a microfluidic‐tunable interdigitated capacitor and a planar spiral inductor is fabricated and characterized. Finally, to show the flexibility and stretchability of the resulting electronics, circuits with embedded light emitting diodes (LEDs) are investigated under bending, twisting, and stretching deformations.  相似文献   

5.
An eco‐friendly biodegradable starch paper is introduced for use in next‐generation disposable organic electronics without the need for a planarizing layer. The starch papers are formed by starch gelatinization using a very small amount of 0.5 wt% polyvinyl alcohol (PVA), a polymer that bound to the starch, and 5 wt% of a crosslinker that bound to the PVA to improve mechanical properties. This process minimizes the additions of synthetic materials. The resultant starch paper provides a remarkable mechanical strength and stability under repeated movements. Robustness tests using various chemical solvents are conducted by immersing the starch paper for 6 h. Excellent nonpolar solvent stabilities are observed. They are important for the manufacture of organic electronics that use nonpolar solution processes. The applicability of the starch paper as a flexible substrate is tested by fabricating flexible organic transistors using pentacene, dinaphtho[2,3‐b:2′,3′‐f]thieno[3,2‐b]thiophene, and poly(dimethyl‐triarylamine) using both vacuum and solution processes. Electrically well‐behaved device performances are identified. Finally, the eco‐friendly biodegradability is verified by subjecting the starch paper to complete degradation by fungi in fishbowl water over 24 d. These developments illuminate new research areas in the field of biodegradable green electronics, enabling the development of extremely low‐cost electronics.  相似文献   

6.
Graphene has been highlighted as a platform material in transparent electronics and optoelectronics, including flexible and stretchable ones, due to its unique properties such as optical transparency, mechanical softness, ultrathin thickness, and high carrier mobility. Despite huge research efforts for graphene‐based electronic/optoelectronic devices, there are remaining challenges in terms of their seamless integration, such as the high‐quality contact formation, precise alignment of micrometer‐scale patterns, and control of interfacial‐adhesion/local‐resistance. Here, a thermally controlled transfer printing technique that allows multiple patterned‐graphene transfers at desired locations is presented. Using the thermal‐expansion mismatch between the viscoelastic sacrificial layer and the elastic stamp, a “heating and cooling” process precisely positions patterned graphene layers on various substrates, including graphene prepatterns, hydrophilic surfaces, and superhydrophobic surfaces, with high transfer yields. A detailed theoretical analysis of underlying physics/mechanics of this approach is also described. The proposed transfer printing successfully integrates graphene‐based stretchable sensors, actuators, light‐emitting diodes, and other electronics in one platform, paving the way toward transparent and wearable multifunctional electronic systems.  相似文献   

7.
Novel nacre‐mimic bio‐nanocomposites, such as graphene‐based laminates, are pushing the boundaries of strength and toughness as flexible engineering materials. Translating these material advances to functional flexible electronics requires methods for generating print‐scalable microcircuits (conductive elements surrounded by dielectric) into these strong, tough, lightweight bio‐nanocomposites. Here, a new paradigm for printing flexible electronics by employing facile, eco‐friendly seriography to confine the reduction of graphene oxide biopapers reinforced by silk interlayers is presented. Well‐defined, micropatterned regions on the biopaper are chemically reduced, generating a 106 increase in conductivity (up to 104 S m?1). Flexible, robust graphene‐silk circuits are showcased in diverse applications such as resistive moisture sensors and capacitive proximity sensors. Unlike conductive (i.e., graphene‐ or Ag nanoparticle‐loaded) inks printed onto substrates, seriography‐guided reduction does not create mechanically weak interfaces between dissimilar materials and does not require the judicious formation of ink. The unimpaired functionality of printed‐in graphene‐silk microcircuits after thousands of punitive folding cycles and chemical attack by harsh solvents is demonstrated. This novel approach provides a low‐cost, portable solution for printing micrometer‐scale conductive features uniformly across large areas (>hundreds of cm2) in layered composites for applications including wearable health monitors, electronic skin, rollable antennas, and conformable displays.  相似文献   

8.
To develop high‐capacitance flexible solid‐state supercapacitors and explore its application in self‐powered electronics is one of ongoing research topics. In this study, self‐stacked solvated graphene (SSG) films are reported that have been prepared by a facile vacuum filtration method as the free‐standing electrode for flexible solid‐state supercapacitors. The highly hydrated SSG films have low mass loading, high flexibility, and high electrical conductivity. The flexible solid‐state supercapacitors based on SSG films exhibit excellent capacitive characteristics with a high gravimetric specific capacitance of 245 F g?1 and good cycling stability of 10 000 cycles. Furthermore, the flexible solid‐state supercapacitors are integrated with high performance perovskite hybrid solar cells (pero‐HSCs) to build self‐powered electronics. It is found that the solid‐state supercapacitors can be charged by pero‐HSCs and discharged from 0.75 V. These results demonstrate that the self‐powered electronics by integration of the flexible solid‐state supercapacitors with pero‐HSCs have great potential applications in storage of solar energy and in flexible electronics, such as portable and wearable personal devices.  相似文献   

9.
Graphene is regarded as the ultimate material for future flexible, high‐performance, and wearable electronics. Herein, a novel, robust, all‐green, highly reliable (yield ≥ 99%), and upscalable technology is reported for wearable applications comprising reduced graphene oxide (rGO) as the electroactive component in liquid‐gated transistors (LGTs). rGO is a formidable material for future flexible and wearable applications due to its easy processability, excellent surface reactivity, and large‐area coverage. A novel protocol is established toward the high‐yield fabrication of flexible rGO LGTs combining high robustness (>1.5 h of continuous operation) with state‐of‐the‐art performances, being similar to those of their rigid counterparts operated under liquid gating, including field‐effect mobility of ≈10?1 cm2 V?1 s?1 and transconductance of ≈25 µS. Permeable membranes have been proven crucial to operate flexible LGTs under mechanical stress with reduced amounts of solution (<20 µL). Our rGO LGTs are operated in artificial sweat exploiting two different layouts based on lateral‐flow paper fluidics. These approaches pave the road toward future real‐time tracking of perspiration via a simple and cost‐effective approach. The reported findings contribute to the robust and scalable production of novel graphene‐based flexible devices, whose features fulfill the requirements of wearable electronics.  相似文献   

10.
The fabrication of all‐transparent flexible vertical Schottky barrier (SB) transistors and logic gates based on graphene–metal oxide–metal heterostructures and ion gel gate dielectrics is demonstrated. The vertical SB transistor structure is formed by (i) vertically sandwiching a solution‐processed indium‐gallium‐zinc‐oxide (IGZO) semiconductor layer between graphene (source) and metallic (drain) electrodes and (ii) employing a separate coplanar gate electrode bridged with a vertical channel through an ion gel. The channel current is modulated by tuning the Schottky barrier height across the graphene–IGZO junction under an applied external gate bias. The ion gel gate dielectric with high specific capacitance enables modulation of the Schottky barrier height at the graphene–IGZO junction over 0.87 eV using a voltage below 2 V. The resulting vertical devices show high current densities (18.9 A cm?2) and on–off current ratios (>104) at low voltages. The simple structure of the unit transistor enables the successful fabrication of low‐power logic gates based on device assemblies, such as the NOT, NAND, and NOR gates, prepared on a flexible substrate. The facile, large‐area, and room‐temperature deposition of both semiconducting metal oxide and gate insulators integrates with transparent and flexible graphene opens up new opportunities for realizing graphene‐based future electronics.  相似文献   

11.
Graphene, a two‐dimensional, single‐atom‐thick carbon crystal arranged in a honeycomb lattice, shows extraordinary electronic, mechanical, thermal, optical, and optoelectronic properties, and has great potential in next‐generation electronics, optics, and optoelectronics. Graphene and graphene‐based nanomaterials have witnessed a very fast development of both fundamental and practical aspects in optics and optoelectronics since 2008. In this Feature Article, the synthesis techniques and main electronic and optical properties of graphene‐based nanomaterials are introduced with a comprehensive view. Recent progress of graphene‐based nanomaterials in optical and optoelectronic applications is then reviewed, including transparent conductive electrodes, photodetectors and phototransistors, photovoltaics and light emitting devices, saturable absorbers for ultrafast lasers, and biological and photocatalytic applications. In the final section, perspectives are given and future challenges in optical and optoelectronic applications of graphene‐based nanomaterials are addressed.  相似文献   

12.
Actively mode‐locked lasers offer varying degrees of flexibility for a wider range of applications than their passively modulated counterparts, due to their capability for electrically controlled ultrahigh repetition rate operation. Graphene based electrooptic modulators with unique advantages of broad operation bandwidth and ultrafast speed are suitable for light modulation in various optoelectronic applications. Here, an actively mode‐locked laser with a graphene based electrooptic modulator is reported for the first time. The active mode‐locking technique combined together with the intracavity nonlinear pulse shortening effect allows the generation of transform‐limited 1.44 ps pulses with pulse energy of 844 pJ. The electrically controlled repetition rate of generated pulses, a key performance advantage of active mode‐locking, is also demonstrated. These results provide a practical and effective approach for actively mode‐locked lasers with broad operation bandwidth and compact footprint, which contributes a new way for applications of two‐dimensional (2D) layered materials in ultrafast lasers.  相似文献   

13.
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m?1 K?2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.  相似文献   

14.
Flexible energy storage devices are critical components for emerging flexible and wearable electronics. Improving the electrochemical performance of flexible energy storage devices depends largely on development of novel electrode architectures and new systems. Here, a new class of flexible energy storage device called flexible sodium‐ion pseudocapacitors is developed based on 3D‐flexible Na2Ti3O7 nanosheet arrays/carbon textiles (NTO/CT) as anode and flexible reduced graphene oxide film (GFs) as cathode without metal current collectors or conducting additives. The NTO/CT anode with advanced electrode architectures is fabricated by directly growing Na2Ti3O7 nanosheet arrays on carbon textiles with robust adhesion through a simple hydrothermal process. The flexible GF//NTO/CT configuration achieves a high energy density of 55 Wh kg?1 and high power density of 3000 W kg?1. Taking the fully packaged flexible sodium‐ion pseudocapacitors into consideration, the maximum practical volumetric energy density and power density reach up to 1.3 mWh cm?3 and 70 mW cm?3, respectively. In addition, the flexible GF//NTO/CT device demonstrates a stable electrochemical performances with almost 100% capacitance retention under harsh mechanical deformation.  相似文献   

15.
Carbon‐based electronic devices are suitable candidates for bioinspired electronics due to their low cost, eco‐friendliness, mechanical flexibility, and compatibility with complementary metal‐oxide‐semiconductor technology. New types of materials such as graphene quantum dots (GQDs) have attracted attention in the search for new applications beyond solar cells and energy harvesting due to their superior properties such as elevated photoluminescence, high chemical inertness, and excellent biocompatibility. In this paper, a biocompatible/organic electronic synapse based on nitrogen‐doped graphene oxide quantum dots (N‐GOQDs) is reported, which exhibits threshold resistive switching via silver cation (Ag+) migration dynamics. In analogy to the calcium (Ca2+) ion dynamics of biological synapses, important biological synapse functions such as short‐term potentiation (STP), paired‐pulse facilitation, and transition from STP to long‐term plasticity behaviors are replicated. Long‐term depression behavior is also evaluated and specific spike‐timing dependent plasticity is assessed. In addition, elaborated switching mechanism of biosimilar Ag+ migration dynamics provides the potential for using N‐GOQD‐based artificial synapse in future biocompatible neuromorphic systems.  相似文献   

16.
The control of carrier transport by electrical, chemical, or optical Fermi level tuning is central to graphene electronics. Here, an optical pump—terahertz (THz) probe spectroscopy—is applied to investigate ultrafast sheet conductivity dynamics in various epitaxially grown graphene layers representing a large variety of carbon allotropes, including H2 intercalated films. The graphene layers display a prominent plasmonic response connected with induced THz transparency spectra on ultrashort timescale. It is generally believed that the plasmonic excitations appear due to wrinkles, and substrate terraces that bring about natural confinement potentials. It is shown that these potentials act within micrometer-sized domains with essentially isotropic character. The measured ultrafast dynamics are entirely controlled by the quasi-Fermi level of laser-excited carriers through their temperature. The photocarriers undergo a disorder-enabled super-collision cooling process with an initial picosecond transfer of the optically deposited heat to the lattice followed by a sub-nanosecond relaxation governed by the lattice cooling. The transient spectra is described by a two-temperature Drude-Lorentz model revealing the ultrafast evolution of the carrier temperature and chemical potential and providing crucial material parameters such as Fermi energy, carrier mobility, carrier confinement length, and disorder mean free path.  相似文献   

17.
The ability to process and dimensionally scale field‐effect transistors with and on paper and to integrate them as a core component for low‐power‐consumption analog and digital circuits is demonstrated. Low‐temperature‐processed p‐ and n‐channel integrated oxide thin‐film transistors in the complementary metal oxide semiconductor (CMOS) inverter architecture are seamlessly layered on mechanically flexible, low‐cost, recyclable paper substrates. The possibility of building these circuits using low‐temperature processes opens the door to new applications ranging from smart labels and sensors on clothing and packaging to electronic displays printed on paper pages for use in newspapers, magazines, books, signs, and advertising billboards. Because the CMOS circuits reported constitute fundamental building blocks for analog and digital electronics, this development creates the potential to have flexible form factor computers seamlessly layered onto paper. The holistic approach of merging low‐power circuitry with a recyclable substrate is an important step towards greener electronics.  相似文献   

18.
Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale.  相似文献   

19.
A hierarchical architecture fabricated by integrating ultrafine titanium dioxide (TiO2) nanocrystals with the binder‐free macroporous graphene (PG) network foam for high‐performance energy storage is demonstrated, where mesoporous open channels connected to the PG facilitate rapid ionic transfer during the Li‐ion insertion/extraction process. Moreover, the binder‐free conductive PG network in direct contact with a current collector provides ultrafast electronic transfer. This structure leads to unprecedented cycle stability, with the capacity preserved with nearly 100% Coulombic efficiency over 10 000 Li‐ion insertion/extraction cycles. Moreover, it is proven to be very stable while cycling 10 to 100‐fold longer compared to typical electrode structures for batteries. This facilitates ultrafast charge/discharge rate capability even at a high current rate giving a very short charge/discharge time of 40 s. Density functional theory calculations also clarify that Li ions migrate into the TiO2–PG interface then stabilizing its binder‐free interface and that the Li ion diffusion occurs via a concerted mechanism, thus resulting in the ultrafast discharge/charge rate capability of the Li ions into ultrafine nanocrystals.  相似文献   

20.
Transient electronics, arising electronic devices with dissolvable or degradable features on demand, is still at an early stage of development due to the limited choices of materials and strategies. Herein, a facile fabrication method for transient circuits by the combination of room‐temperature liquid metals (RTLMs) as the electronic circuit and water‐soluble poly(vinyl alcohol) (PVA) as the packaging material is reported. The as‐made transient circuits exhibit remarkable durability and stable electric performance upon bending and twisting, while possessing short transience times, owing to the excellent solubility of PVA substrates and the intrinsic flexibility of RTLM patterns. Moreover, the RTLM‐based transient circuit shows an extremely high recycling efficiency, up to 96% of the employed RTLM can be recovered. As such, the economic and environmental viability of transient electronics increases substantially. To validate this concept, the surface patterning of RTLMs with complicated shapes is demonstrated, and a transient antenna is subsequently applied for passive near‐field communication tag and a transient capacitive touch sensor. The application of the RTLM‐based transient circuit for sequentially turning off an array of light‐emitting‐diode lamps is also demonstrated. The present RTLM‐based PVA‐encapsulated circuits substantially expand the scope of transient electronics toward flexible and recyclable transient systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号