首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photodetectors with ultrafast response are explored using inorganic/organic hybrid perovskites. High responsivity and fast optoelectronic response are achieved due to the exceptional semiconducting properties of perovskite materials. However, most of the perovskite‐based photodetectors exploited to date are centered on Pb‐based perovskites, which only afford spectral response across the visible spectrum. This study demonstrates a high‐performance near‐IR (NIR) photodetector using a stable low‐bandgap Sn‐containing perovskite, (CH3NH3)0.5(NH2CHNH2)0.5Pb0.5Sn0.5I3 (MA0.5FA0.5Pb0.5Sn0.5I3), which is processed with an antioxidant additive, ascorbic acid (AA). The addition of AA effectively strengthens the stability of Sn‐containing perovskite against oxygen, thereby significantly inhibiting the leakage current. Consequently, the derived photodetector shows high responsivity with a detectivity of over 1012 Jones ranging from 800 to 970 nm. Such low‐cost, solution processable NIR photodetectors with high performance show promising potential for future optoelectronic applications.  相似文献   

2.
The perovskite quantum dots are usually synthesized by solution chemistry and then fabricated into film for device application with some extra process. Here it is reported for the first time to in situ formation of a crosslinked 2D/3D NH3C4H9COO(CH3NH3) n Pbn Br3n perovskite planar films with controllable quantum confine via bifunctional amino acid crosslinkage, which is comparable to the solution chemistry synthesized CH3NH3PbBr3 quantum dots. These atomic layer controllable perovskite films are facilely fabricated and tuned by addition of bi‐functional 5‐aminovaleric acid (Ava) of NH2C4H9COOH into regular (CH3NH3)PbBr3 (MAPbBr3) perovskite precursor solutions. Both the NH3+ and the COO? groups of the zwitterionic amino acid are proposed to crosslink the atomic layer MAPbBr3 units via Pb? COO bond and ion bond between NH3+ and [PbX6] unit. The characterizations by atomic force microscopy, scanning electron microscopy, Raman, and photoluminescence spectroscopy confirm a successful fabrication of ultrasmooth and stable film with tunable optical properties. The bifunctional crosslinked 2D/3D Ava(MAPbBr3)n perovskite films with controllable quantum confine would serve as distinct and promising materials for optical and optoelectronic applications.  相似文献   

3.
While perovskite light‐emitting diodes typically made with high work function anodes and low work function cathodes have recently gained intense interests. Perovskite light‐emitting devices with two high work function electrodes with interesting features are demonstrated here. Firstly, electroluminescence can be easily obtained from both forward and reverse biases. Secondly, the results of impedance spectroscopy indicate that the ionic conductivity in the iodide perovskite (CH3NH3PbI3) is large with a value of ≈10?8 S cm?1. Thirdly, the shift of the emission spectrum in the mixed halide perovskite (CH3NH3PbI3?xBrx) light‐emitting devices indicates that I? ions are mobile in the perovskites. Fourthly, this work shows that the accumulated ions at the interfaces result in a large capacitance (≈100 μF cm?2). The above results conclusively prove that the organic–inorganic halide perovskites are solid electrolytes with mixed ionic and electronic conductivity and the light‐emitting device is a light‐emitting electrochemical cell. The work also suggests that the organic–inorganic halide perovskites are potential energy‐storage materials, which may be applicable in the field of solid‐state supercapacitors and batteries.  相似文献   

4.
The application of low average layer-number (〈n〉 ≤ 2) 2D perovskites in semitransparent photovoltaics (ST-PVs) has been hindered by their strong exciton binding energy and high electrical anisotropy. Here, the phase distribution is expanded fully and orderly to enable efficient charge transport in 2D (NMA)2(MA)Pb2I7 (NMA: 1-naphthylmethylammonium, MA: CH3NH3+) perovskite films by regulating the sedimentation dynamics of organic cation-based colloids. Ammonium chloride is synergistically introduced to enhance the phase separation further and construct a favorable out-of-plane orientation. The wide and graded phase distribution well aligns the energy level to facilitate charge transfer. As a result, the first application of an average 〈n〉 = 2 2D perovskite is implemented in ST-PVs with visible power conversion efficiency (PCE) of 7.52% and high average visible transmittance (AVT) of 40.5%. This study offers a new candidate and an effective strategy for efficient and stable ST-PVs and is relevant to other perovskite optoelectronic devices.  相似文献   

5.
Tin‐based perovskites have exhibited high potential for efficient photovoltaics application due to their outstanding optoelectrical properties. However, the extremely undesired instabilities significantly hinders their development and further commercialization process. A novel tin‐based reduced‐dimensional (quasi‐2D) perovskites is reported here by using 5‐ammoniumvaleric acid (5‐AVA+) as the organic spacer. It is demonstrated that by introducing appropriate amount of ammonium chloride (NH4Cl) as additive, highly vertically oriented tin‐based quasi‐2D perovskite films are obtained, which is proved through the grazing incidence wide‐angle X‐ray scattering characterization. In particular, this approach is confirmed to be a universal method to deliver highly vertically oriented tin‐based quasi‐2D perovskites with various spacers. The highly ordered vertically oriented perovskite films significantly improve the charge collection efficiency between two electrodes. With the optimized NH4Cl concentration, the solar cells employing quasi‐2D perovskite, AVA2FAn?1SnnI3n+1 (<n> = 5), as light absorbers deliver a power conversion efficiency up to 8.71%. The work paves the way for further employing highly vertically oriented tin‐based quasi‐2D perovskite films for highly efficient and stable photovoltaics.  相似文献   

6.
Ruddlesden–Popper phase (RP‐phase) perovskites that consist of 2D perovskite slabs interleaved with bulky organic ammonium (OA) are favorable for light‐emitting diodes (LEDs). The critical limitation of LED applications is that the insulating OA arranged in a preferred orientation limits charge transport. Therefore, the ideal solution is to achieve a randomly connected structure that can improve charge transport without hampering the confinement of the electron–hole pair. Here, a structurally modulated RP‐phase metal halide perovskite (MHP), (PEA)2(CH3NH3)m?1PbmBr3m+1 is introduced to make the randomly oriented RP‐phase unit and ensure good connection between them by applying modified nanocrystal pinning, which leads to an increase in the efficiency of perovskite LEDs (PeLEDs). The randomly connected RP‐phase MHP forces contact between inorganic layers and thereby yields efficient charge transport and radiative recombination. Combined with an optimal dimensionality, (PEA)2(CH3NH3)2Pb3Br10, the structurally modulated RP‐phase MHP exhibits increased photoluminescence quantum efficiency, from 0.35% to 30.3%, and their PeLEDs show a 2,018 times higher current efficiency (20.18 cd A?1) than in the 2D PeLED (0.01 cd A?1) and 673 times than in the 3D PeLED (0.03 cd A?1) using the same film formation process. This approach provides insight on how to solve the limitation of RP‐phase MHP for efficient PeLEDs.  相似文献   

7.
Halide substitution in phenethylammonium spacer cations (X-PEA+, X  = F, Cl, Br) is a facile strategy to improve the performance of PEA based perovskite solar cells (PSCs). However, the power conversion efficiency (PCE) of X-PEA based quasi-2D (Q-2D) PSCs is still unsatisfactory and the underlying mechanisms are in debate. Here, the in-depth study on the impact of halide substitution on the crystal orientation and multi-phase distribution in PEA based perovskite films are reported. The halide substitution eliminates n  =  1 2D perovskite and thus leads to the perpendicular crystal orientation. Furthermore, nucleation competition exists between small-n and large-n phases in PEA and X-PEA based perovskites. This gives rise to the orderly distribution of different n-phases in the PEA and F-PEA based films, and random distribution in Cl-PEA and Br-PEA based films. As a result, (F-PEA)2MA3Pb4I12 (MA = CH3NH3+, n = 4) based PSCs achieve a PCE of 18.10%, significantly higher than those of PEA (12.23%), Cl-PEA (7.93%) and Br-PEA (6.08%) based PSCs. Moreover, the F-PEA based devices exhibit remarkably improved stability compared to their 3D counterparts.  相似文献   

8.
Solar cells based on halide perovskites have recently been attractive due to their excellent power conversion efficiency (PCE), lower cost and simple manufacture. Here, a series of halide perovskites (ABX3: A = CH3NH3, CH(NH2)2, Cs, Rb; B = Pb, Sn, Ge; X = I, Br, Cl, F) were investigated by Density Functional Theory (DFT) calculations, together with Shockley-Queisser Maximum Solar Cell Efficiency (S-Q) and Spectroscopic Limited Maximum Efficiency (SLME) mathematical models. The results indicate that: the electronic structure of germanium perovskites bears a close similarity to that of lead perovskites with a small energy difference between the nonbonding orbital and antibonding orbitals, but with a large energy difference comparing with that of tin perovskites (0.6–1.7 eV for CsGeI3 at Z point of the Brillouin zone, 0.7–1.4 eV for CH3NH3PbI3 and 1.4–2.2 eV for CH3NH3SnI3 at R point of the Brillouin zone), which is attributable to the atomic level, where the 4s orbital energy of Ge (−11.5 eV) is close to the 6s orbital energy of Pb (−11.6 eV), but the 5s orbital energy of Sn (−10.1 eV) is significantly high. Therefore, germanium perovskites possess as high absorption coefficient around solar spectrum as lead perovskites, while tin perovskites only have low absorption coefficient, which makes the short-circuit current of CsGeI3 and CH3NH3PbI3 (0.017 Acm−2 and 0.016 Acm−2, simulated by SLME with a 200 nm absorber under AM1.5G) are higher than that of CH3NH3SnI3 (0.015 Acm−2) even if the bandgap of CsGeI3 and CH3NH3PbI3 (1.51 eV and 1.55 eV) are larger than that of CH3NH3SnI3 (1.21 eV). Meanwhile, the effective mass of electrons and holes are approximate for germanium perovskites and lead perovskites (0.14:0.19 for CsGeI3 and 0.12:0.12 for CH3NH3PbI3), indicating a balanced electrons and holes transport, whereas the electrons transport is much slower than the holes transport for tin perovskites due to the effective mass of electron is much larger than that of hole (0.17:0.04 for CH3NH3SnI3). As a result, the PCE of CsGeI3 (27.9%) and CH3NH3PbI3 (26.7%) is higher than that of CH3NH3SnI3 (19.9%).  相似文献   

9.
2D perovskites have attracted intensive attention by virtue of their excellent optical and electrical properties along with good stabilities. Herein, a highly sensitive self-powered photodiode based on (PEA)2(MA)4Pb5I16 (PEA=C6H5(CH2)NH3, MA=CH3NH3) 2D perovskite is demonstrated by dual interface passivations. The Al2O3 bottom passivation can reduce the pinhole defects in the 2D perovskite film and suppress the trap-related recombination loss, bringing forward much reduced dark current and increased photocurrent. The poly (methyl methacrylate) (PMMA) top passivation can encapsulate the 2D perovskite film and thus improve the stability of the device. These results show that the 2D perovskite-based photodiode with dual interface passivations exhibits a large photo-to-dark current ratio of 107, a fast response speed of 597 ns and a linear dynamic range of 160 dB without bias. Responsivity (R) and detectivity (D*) respectively reach 0.36 A W−1 and 5.4 × 1012 Jones under 532 nm laser illumination at a power density of 1.5 nW cm−2. Moreover, the dual interface passivated device exhibits good stabilities. This study paves the road for developing low-cost, low-power, solution processed image sensors.  相似文献   

10.
Perovskite solar cells (PSCs) have improved dramatically over the past decade, increasing in efficiency and gradually overcoming hurdles of temperature‐ and humidity‐induced instability. Materials that combine high charge‐carrier lifetimes and mobilities, strong absorption, and good crystallinity of 3D perovskites with the hydrophobic properties of 2D perovskites have become particularly promising candidates for use in solar cells. In order to fully understand the optoelectronic properties of these 2D–3D hybrid systems, the hybrid perovskite BAx(FA0.83Cs0.17)1‐xPb(I0.6Br0.4)3 is investigated across the composition range 0 ≤ x ≤ 0.8. Small amounts of butylammonium (BA) are found that help to improve crystallinity and appear to passivate grain boundaries, thus reducing trap‐mediated charge‐carrier recombination and enhancing charge‐carrier mobilities. Excessive amounts of BA lead to poor crystallinity and inhomogeneous film formation, greatly reducing effective charge‐carrier mobility. For low amounts of BA, the benevolent effects of reduced recombination and enhanced mobilities lead to charge‐carrier diffusion lengths up to 7.7 µm for x = 0.167. These measurements pave the way for highly efficient, highly stable PSCs and other optoelectronic devices based on 2D–3D hybrid materials.  相似文献   

11.
2D perovskites have attracted extensive attention due to their excellent stability compared with 3D perovskites. However, the intrinsic hydrophilicity of introduced alkylammonium salts effects the humidity stability of 2D/3D perovskites. Devices based on longer chain alkylammonium salts show improvement in hydrophobicity but lower efficiency due to the poorer charge transport among various layers. To solve this issue, two hydrophobic short‐chain alkylammonium salts with halogen functional groups (2‐chloroethylamine, CEA+ and 2‐bromoethylamine, BEA+) are introduced into (Cs0.1FA0.9)Pb(I0.9Br0.1)3 3D perovskites to form 2D/3D perovskite structure, which achieve high‐quality perovskite films with better crystallization and morphology. The optimal 2D/3D perovskite solar cells (PSCs) with 5% CEA+ display a power conversion efficiency (PCE) as high as 20.08% under 1 sun irradiation. Because of the notable hydrophobicity of alkylammonium cations with halogen functional groups and the formed 2D/3D perovskite structure, the optimal PSCs exhibit superior moisture resistance and retain 92% initial PCE after aging at 50 ± 5% relative humidity for 2400 h. This work opens up a new direction for the design of new‐type 2D/3D PSCs with improved performance by employing proper alkylammonium salts with different functional groups.  相似文献   

12.
Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite‐based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high‐quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament‐type switching behavior. This work elucidates the important role of processing‐dependent defects in the charge transport of hybrid perovskites and provides insights on the ion‐redistribution‐based RS in perovskite memory devices.  相似文献   

13.
Knowledge of the mechanism of formation, orientation, and location of phases inside thin perovskite films is essential to optimize their optoelectronic properties. Among the most promising, low toxicity, lead‐free perovskites, the tin‐based ones are receiving much attention. Here, an extensive in situ and ex situ structural study is performed on the mechanism of crystallization from solution of 3D formamidinium tin iodide (FASnI3), 2D phenylethylammonium tin iodide (PEA2SnI4), and hybrid PEA2FAn?1SnnI3n+1 Ruddlesden–Popper perovskites. Addition of small amounts of low‐dimensional component promotes oriented 3D‐like crystallite growth in the top part of the film, together with an aligned quasi‐2D bottom‐rich phase. The sporadic bulk nucleation occurring in the pure 3D system is negligible in the pure 2D and in the hybrid systems with sufficiently high PEA content, where only surface crystallization occurs. Moreover, tin‐based perovskites form through a direct conversion of a disordered precursor phase without forming ordered solvated intermediates and thus without the need of thermal annealing steps. The findings are used to explain the device performances over a wide range of composition and shed light onto the mechanism of the formation of one of the most promising Sn‐based perovskites, providing opportunities to further improve the performances of these interesting Pb‐free materials.  相似文献   

14.
Two critical limitations of organic–inorganic lead halide perovskite materials for solar cells are their poor stability in humid environments and inclusion of toxic lead. In this study, high‐throughput density functional theory (DFT) methods are used to computationally model and screen 1845 halide perovskites in search of new materials without these limitations that are promising for solar cell applications. This study focuses on finding materials that are comprised of nontoxic elements, stable in a humid operating environment, and have an optimal bandgap for one of single junction, tandem Si‐perovskite, or quantum dot–based solar cells. Single junction materials are also screened on predicted single junction photovoltaic (PV) efficiencies exceeding 22.7%, which is the current highest reported PV efficiency for halide perovskites. Generally, these methods qualitatively reproduce the properties of known promising nontoxic halide perovskites that are either experimentally evaluated or predicted from theory. From a set of 1845 materials, 15 materials pass all screening criteria for single junction cell applications, 13 of which are not previously investigated, such as (CH3NH3)0.75Cs0.25SnI3, ((NH2)2CH)Ag0.5Sb0.5Br3, CsMn0.875Fe0.125I3, ((CH3)2NH2)Ag0.5Bi0.5I3, and ((NH2)2CH)0.5Rb0.5SnI3. These materials, together with others predicted in this study, may be promising candidate materials for stable, highly efficient, and nontoxic perovskite‐based solar cells.  相似文献   

15.
A key issue for perovskite solar cells is the stability of perovskite materials due to moisture effects under ambient conditions, although their efficiency is improved constantly. Herein, an improved CH3NH3PbI3?xClx perovskite quality is demonstrated with good crystallization and stability by using water as an additive during crystal perovskite growth. Incorporating suitable water additives in N,N‐dimethylformamide (DMF) leads to controllable growth of perovskites due to the lower boiling point and the higher vapor pressure of water compared with DMF. In addition, CH3NH3PbI3?xClx · nH2O hydrated perovskites, which can be resistant to the corrosion by water molecules to some extent, are assumed to be generated during the annealing process. Accordingly, water additive based perovskite solar cells present a high power conversion efficiency of 16.06% and improved cell stability under ambient conditions compared with the references. The findings in this work provide a route to control the growth of crystal perovskites and a clue to improve the stability of organic–inorganic halide perovskites.  相似文献   

16.
An important property of hybrid layered perovskite is the possibility to reduce its dimensionality to provide wider band gap and better stability. In this work, 2D perovskite of the structure (PEA)2(MA)n–1PbnBr3n+1 has been sensitized, where PEA is phenyl ethyl‐ammonium, MA is methyl‐ammonium, and using only bromide as the halide. The number of the perovskite layers has been varied (n) from n = 1 through n = ∞. Optical and physical characterization verify the layered structure and the increase in the band gap. The photovoltaic performance shows higher open circuit voltage (Voc) for the quasi 2D perovskite (i.e., n = 40, 50, 60) compared to the 3D perovskite. Voc of 1.3 V without hole transport material (HTM) and Voc of 1.46 V using HTM have been demonstrated, with corresponding efficiency of 6.3% and 8.5%, among the highest reported. The lower mobility and transport in the quasi 2D perovskites have been proved effective to gain high Voc with high efficiency, further supported by ab initio calculations and charge extraction measurements. Bromide is the only halide used in these quasi 2D perovskites, as mixing halides have recently revealed instability of the perovskite structure. These quasi 2D materials are promising candidates for use in optoelectronic applications that simultaneously require high voltage and high efficiency.  相似文献   

17.
Organic–inorganic halide hybrid perovskite materials are promising materials for X‐ray and photon detection due to their superior optoelectronic properties. Single‐crystal (SGC) perovskites have increasingly attracted attention due to their substantially low crystal defects, which contribute to improving the figures of merit of the devices. Cuboid CH3NH3PbI3 SGC with the naturally favorable geometry for device fabrication is rarely reported in X‐ray and photon detection application. The concept of seed dissolution‐regrowth to improve crystal quality of cuboid CH3NH3PbI3 SGC is proposed and a fundamental understanding of the nucleation and growth is provided thermodynamically. The X‐ray detector fabricated from cuboid CH3NH3PbI3 SGC demonstrates the firstly reported high sensitivity of 968.9 µC?1 Gy?1 cm?2 under ?1 V bias. The results also show that the favorable crystal orientation and high quality of cuboid CH3NH3PbI3 leads to better responsivity and faster response speed than the more common dodecahedral CH3NH3PbI3 in photodetection. Consequently, the work paves a way to synthesize high‐quality perovskite SGCs and benefits the application of MAPbI3 SGCs with preferred crystal orientation and favorable crystal geometry for emerging device applications.  相似文献   

18.
Large‐size crystals of organic–inorganic hybrid perovskites (e.g., CH3NH3PbX3, X = Cl, Br, I) have gained wide attention since their spectacular progress on optoelectronic technologies. Although presenting brilliant semiconducting properties, a serious concern of the toxicity in these lead‐based hybrids has become a stumbling block that limits their wide‐scale applications. Exploring lead‐free hybrid perovskite is thus highly urgent for high‐performance optoelectronic devices. Here, a new lead‐free perovskite hybrid (TMHD)BiBr5 (TMHD = N,N,N,N‐tetramethyl‐1,6‐hexanediammonium) is prepared from facile solution process. Emphatically, inch‐size high‐quality single crystals are successfully grown, the dimensions of which reach up to 32 × 24 × 12 mm3. Furthermore, the planar arrays of photodetectors based on bulk lead‐free (TMHD)BiBr5 single crystals are first fabricated, which shows sizeable on/off current ratios (≈103) and rapid response speed (τrise = 8.9 ms and τdecay = 10.2 ms). The prominent device performance of (TMHD)BiBr5 strongly underscores the lead‐free hybrid perovskite single crystals as promising material candidates for optoelectronic applications.  相似文献   

19.
The booming development of organometal halide perovskites has prompted the exploration of morphology‐engineering strategies to improve their performance in optoelectronic applications. However, the preparation of optoelectronic devices of perovskites with complex architectures and desirable properties is still highly challenging. Herein, novel CH3NH3PbI3 nanonets and nanobowl arrays are fabricated facilely by using monolayer colloidal crystal (MCC) templates on different substrates. Specifically, highly ordered CH3NH3PbI3 nanonets with high crystallinity are fabricated on a variety of flat substrates, whereas regular CH3NH3PbI3 nanobowl arrays are produced on a coarse substrate. The photodetection performance of the CH3NH3PbI3 nanonet‐based photodetectors is significantly enhanced compared to the photodetectors based on conventional CH3NH3PbI3 compact films. Particularly, the nanonet photodetectors exhibit a high responsivity (10.33 A W?1 under 700 nm monochromatic light), which is six times higher than that for the compact CH3NH3PbI3 film devices, fast response speed, and good stability. Owing to the two‐dimensional arrayed structure, the CH3NH3PbI3 nanonets exhibit an enhanced light harvesting ability and offer direct carrier transport pathways. Meanwhile, the MCC template brings about larger grain sizes with enhanced crystallinity. Furthermore, the perovskite nanonets can be formed on a flexible polyethylene terephthalate substrate for the fabrication of promising flexible nanonet photodetectors.  相似文献   

20.
Hybrid organic–inorganic perovskites have attracted intensive interest as light absorbing materials in solid‐state solar cells. Herein, we demonstrate a high‐performance CH3NH3PbI3‐based perovskite photodetector constructed on the flexible indium tin oxide (ITO) coated substrate even after 200 bending cycles. The as‐fabricated devices show high responsivity, broad spectrum response from ultraviolet to whole visible light, long‐term stability, and high on‐off ratio. Particularly, atomic layer deposition technique was used to deposit the ultrathin Al2O3 film on devices, functioning as a protection layer to effectively enhance the stability and durability of perovskite photodetectors. The first all‐perovskite self‐powered nanosystem was successfully assembled by integrating a perovskite solar cell with a perovskite photodetector. Driven by the perovskite solar cell, the photodetector exhibits fast and stable response to illuminated light at a low working voltage less than 1.0 V. This stable integrated nanosystem has promising applications in which photodetectors can work in harsh environments without external power sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号