首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sodium‐ion hybrid capacitors (SIHCs) can potentially combine the virtues of high‐energy density of batteries and high‐power output as well as long cycle life of capacitors in one device. The key point of constructing a high‐performance SIHC is to couple appropriate anode and cathode materials, which can well match in capacity and kinetics behavior simultaneously. In this work, a novel SIHC, coupling a titanium dioxide/carbon nanocomposite (TiO2/C) anode with a 3D nanoporous carbon cathode, which are both prepared from metal–organic frameworks (MOFs, MIL‐125 (Ti) and ZIF‐8, respectively), is designed and fabricated. The robust architecture and extrinsic pseudocapacitance of TiO2/C nanocomposite contribute to the excellent cyclic stability and rate capability in half‐cell. Hierarchical 3D nanoporous carbon displays superior capacity and rate performance. Benefiting from the merits of structures and performances of anode and cathode materials, the as‐built SIHC achieves a high energy density of 142.7 W h kg?1 and a high power output of 25 kW kg?1 within 1–4 V, as well as an outstanding life span of 10 000 cycles with over 90% of the capacity retention. The results make it competitive in high energy and power–required electricity storage applications.  相似文献   

2.
On account of increasing demand for energy storage devices, sodium‐ion batteries (SIBs) with abundant reserve, low cost, and similar electrochemical properties have the potential to partly replace the commercial lithium‐ion batteries. In this study, a facile metal‐organic framework (MOF)‐derived selenidation strategy to synthesize in situ carbon‐encapsulated selenides as superior anode for SIBs is rationally designed. These selenides with particular micro‐ and nanostructured features deliver ultrastable cycling performance at high charge–discharge rate and demonstrate ultraexcellent rate capability. For example, the uniform peapod‐like Fe7Se8@C nanorods represent a high specific capacity of 218 mAh g?1 after 500 cycles at 3 A g?1 and the porous NiSe@C spheres display a high specific capacity of 160 mAh g?1 after 2000 cycles at 3 A g?1. The current simple MOF‐derived method could be a promising strategy for boosting the development of new functional inorganic materials for energy storage, catalysis, and sensors.  相似文献   

3.
4.
The sluggish kinetics of Faradaic reactions in bulk electrodes is a significant obstacle to achieve high energy and power density in energy storage devices. Herein, a composite of LiFePO4 particles trapped in fast bifunctional conductor rGO&C@Li3V2(PO4)3 nanosheets is prepared through an in situ competitive redox reaction. The composite exhibits extraordinary rate capability (71 mAh g?1 at 15 A g?1) and remarkable cycling stability (0.03% decay per cycle over 1000 cycles at 10 A g?1). Improved extrinsic pseudocapacitive contribution is the origin of fast kinetics, which endows this composite with high energy and power density, since the unique 2D nanosheets and embedded ultrafine LiFePO4 nanoparticles can shorten the ion and electron diffusion length. Even applied to Li‐ion hybrid capacitors, the obtained devices still achieve high power density of 3.36 kW kg?1 along with high energy density up to 77.8 Wh kg?1. Density functional theory computations also validate that the remarkable rate performance is facilitated by the desirable ionic and electronic conductivity of the composite.  相似文献   

5.
6.
Potassium‐ion hybrid capacitors (PIHCs) shrewdly combine a battery‐type anode and a capacitor‐type cathode, exhibiting an energy density close to that of potassium ion batteries and a comparable power density of supercapacitors. However, the rosy scenario is compromised by the sluggish kinetics in the PIHCs device. Herein, the kinetics enhanced nitrogen‐doped hierarchical porous hollow carbon spheres (NHCS) are synthesized and successfully applied to PIHCs. As for the K half‐cell, NHCS anchored with sodium alginate delivers excellent electrochemical performance. Further evaluation shows that the binder can significantly affect the potassium storage performance of NHCS by adjusting the coatability and ionic conductivity of the NHCS anode. Moreover, kinetic analysis and density functional theory calculations reveal the origin of the superior electrochemical properties of NHCS. As expected, an advanced PIHC device is assembled with a NHCS anode and an activated NHCS cathode, demonstrating an exceptionally high energy/power density (114.2 Wh kg?1 and 8203 W kg?1), along with a long‐life capability. The successful construction of high‐performance PIHCs in this work opens a new avenue for the development and application of PIHCs in the future.  相似文献   

7.
Herein, a novel polymer‐templated strategy is described to obtain 2D nickel‐based MOF nanosheets using Ni(OH)2, squaric acid, and polyvinylpyrrolidone (PVP), where PVP has a dual role as a structure‐directing agent, as well as preventing agglomeration of the MOF nanosheets. Furthermore, a scalable method is developed to transform the 2D MOF sheets to Ni7S6/graphene nanosheet (GNS) heterobilayers by in situ sulfidation using thiourea as a sulfur source. The Ni7S6/GNS composite shows an excellent reversible capacity of 1010 mAh g?1 at 0.12 A g?1 with a Coulombic efficiency of 98% capacity retention. The electrochemical performance of the Ni7S6/GNS composite is superior not only to nickel sulfide/graphene‐based composites but also to other metal disulfide–based composite electrodes. Moreover, the Ni7S6/GNS anode exhibits excellent cycle stability (≈95% capacity retention after 2000 cycles). This outstanding electrochemical performance can be attributed to the synergistic effects of Ni7S6 and GNS, where GNS serves as a conducting matrix to support Ni7S6 nanosheets while Ni7S6 prevents restacking of GNS. This work opens up new opportunities in the design of novel functional heterostructures by hybridizing 2D MOF nanosheets with other 2D nanomaterials for electrochemical energy storage/conversion applications.  相似文献   

8.
Microporous nitrogen‐rich carbon fibers (HAT‐CNFs) are produced by electrospinning a mixture of hexaazatriphenylene‐hexacarbonitrile (HAT‐CN) and polyvinylpyrrolidone and subsequent thermal condensation. Bonding motives, electronic structure, content of nitrogen heteroatoms, porosity, and degree of carbon stacking can be controlled by the condensation temperature due to the use of the HAT‐CN with predefined nitrogen binding motives. The HAT‐CNFs show remarkable reversible capacities (395 mAh g?1 at 0.1 A g?1) and rate capabilities (106 mAh g?1 at 10 A g?1) as an anode material for sodium storage, resulting from the abundant heteroatoms, enhanced electrical conductivity, and rapid charge carrier transport in the nanoporous structure of the 1D fibers. HAT‐CNFs also serve as a series of model compounds for the investigation of the contribution of sodium storage by intercalation and reversible binding on nitrogen sites at different rates. There is an increasing contribution of intercalation to the charge storage with increasing condensation temperature which becomes less active at high rates. A hybrid sodium‐ion capacitor full cell combining HAT‐CNF as the anode and salt‐templated porous carbon as the cathode provides remarkable performance in the voltage range of 0.5–4.0 V (95 Wh kg?1 at 0.19 kW kg?1 and 18 Wh kg?1 at 13 kW kg?1).  相似文献   

9.
Flexible porous films are prepared from electrospun carbon nanofibers (CNFs) embedded with Co3O4 hollow nanoparticles (NPs) and are directly applied as self‐supported electrodes for high‐performance electrochemical capacitors. Uniform Co3O4 hollow NPs are well dispersed and/or embedded into each CNF with desirable electrical conductivity. These Co3O4‐CNFs intercross each other and form 3D hierarchical porous hybrid films. Benefiting from intriguing structural features, the unique binder‐free Co3O4 hollow NPs/CNF hybrid film electrodes exhibit high specific capacitance (SC), excellent rate capability and cycling stability. As an example, the flexible hybrid film with loading of 35.9 wt% Co3O4 delivers a SC of 556 F g?1 at a current density of 1 A g?1, and 403 F g?1 even at a very high current density of 12 A g?1. Remarkably, almost no decay in SC is found after continuous charge/discharge cycling for 2000 cycles at 4 A g?1. This exceptional electrochemical performance makes such novel self‐supported Co3O4‐CNFs hybrid films attractive for high‐performance electrochemical capacitors.  相似文献   

10.
Potassium‐ion battery (PIB) using a carbon‐based anode is an ideal device for electrochemical energy storage. However, the large atomic size of potassium ions inevitably leads to huge volume expansion and the collapse of anodes, resulting in the severe capacity fading during the long‐term cycling. Herein, silicon carbide‐derived carbon (SiC‐CDC) with a controllable pore structure is synthesized with a concise etching approach. It exhibits a maximum capacity of 284.8 mA h g?1 at a current density of 0.1 A g?1 after 200 cycles as well as a highly reversible capacity of 197.3 mA h g?1 at a current density of 1.0 A g?1 even after 1000 cycles. A mixed mechanism of the potassium storage is proposed for this prominent performance. The interconnected pore structure with a high proportion of mesopore volume provides abundant active sites for the adsorption of potassium ions, a shortened electrolyte penetration path, and enlarged accumulation space for potassium ions, eventually leading to facilitated capacitive potassium storage inside this SiC‐CDC electrode. This work provides fundamental theories of designing pore structures for boosting capacitive potassium storage and unveils CDC‐based materials as the prospective anodes for high‐performance PIBs.  相似文献   

11.
Li‐ion batteries containing cost‐effective, environmentally benign cathode materials with high specific capacities are in critical demand to deliver the energy density requirements of electric vehicles and next‐generation electronic devices. Here, the phase‐controlled synthesis of copper sulfide (CuxS) composites by the temperature‐controlled sulfurization of a prototypal Cu metal‐organic framework (MOF), HKUST‐1 is reported. The tunable formation of different CuxS phases within a carbon network represents a simple method for the production of effective composite cathode materials for Li‐ion batteries. A direct link between the sulfurization temperature of the MOF and the resultant CuxS phase formed with more Cu‐rich phases favored at higher temperatures is further shown. The CuxS/C samples are characterized through X‐ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy, and energy dispersive X‐ray spectroscopy (EDX) in addition to testing as Li‐ion cathodes. It is shown that the performance is dependent on both the CuxS phase and the crystal morphology with the Cu1.8S/C‐500 material as a nanowire composite exhibiting the best performance, showing a specific capacity of 220 mAh g?1 after 200 charge/discharge cycles.  相似文献   

12.
Lithium ion micro capacitors (LIMCs) demonstrate competitive advantages of simultaneously high energy/power densities and long cycle life over many other micro supercapacitors and micro batteries. However, these performances are significantly determined by the carbon anode with fast Li+ storage kinetics. Herein, a design strategy at the precursor side of a typical porous aromatic framework-5 (PAF-5) from the carbon bonding levels is proposed, and coupling with the post pyrolysis, the sp2/sp3 domains ratio, interlayer spacing, and pore structure of derived carbons can be synergistically balanced. The inherited sp2 domains and porous structure from PAF-5 endow the derived carbon with high electron transport capability and fast Li+ adsorption capacity. Meanwhile, the developed sp3 domains and enlarged interlayer spacing also enable abundant and fast Li+ intercalation contribution, giving rise to a superior rate capability (141.9 mAh g−1 at 4 A g−1) that is 13 times better than a commercial graphite anode. A flexible LIMCs based on this carbon anode are fabricated, and simultaneously high energy/power densities (71.1 mWh cm−3/1.9 W cm−3), long cycle life (94.7% after 6,000 cycles), and flexibility are achieved, demonstrating a great feasibility of designed PAFs as the trimmed carbon anode precursors for high performance Li+ storage.  相似文献   

13.
Organic hybrid supercapacitors that consist of a battery electrode and a capacitive electrode show greatly improved energy density, but their power density is generally limited by the poor rate capability of battery‐type electrodes. In addition, flexible organic hybrid supercapacitors are rarely reported. To address the above issues, herein an in‐plane assembled orthorhombic Nb2O5 nanorod film anode with high‐rate Li+ intercalation to develop a flexible Li‐ion hybrid capacitor (LIC) is reported. The binder‐/additive‐free film exhibits excellent rate capability (≈73% capacity retention with the rate increased from 0.5 to 20 C) and good cycling stability (>2500 times). Kinetic analyses reveal that the high rate performance is mainly attributed to the excellent in‐plane assembly of interconnected single‐crystalline Nb2O5 nanorods on the current collector, ensuring fast electron transport, facile Li‐ion migration in the porous film, and greatly reduced ion‐diffusion length. Using such a Nb2O5 film as anode and commercial activated carbon as cathode, a flexible LIC is designed. It delivers both high gravimetric and high volumetric energy/power densities (≈95.55 Wh kg?1/5350.9 W kg?1; 6.7 mW h cm?3/374.63 mW cm?3), surpassing previous typical Li‐intercalation electrode‐based LICs. Furthermore, this LIC device still keeps good electrochemical attributes even under serious bending states (30°–180°).  相似文献   

14.
An electro‐chemomechanical phase‐field model is developed to capture the metal–insulator phase transformation along with the structural and chemical changes that occur in LixCoO2 in the regular operating range of 0.5 < x < 1. Under equilibrium, in the regime of phase coexistence, it is found that transport limitations lead to kinetically arrested states that are not determined by strain‐energy minimization. Further, lithiation profiles are obtained for different discharging rates and the experimentally observed voltage plateau is observed. Finally, a simple model is developed to account for the conductivity changes for a polycrystalline LixCoO2 thin film as it transforms from the metallic phase to the insulating phase and a strategy is outlined for memristor design. The theory can therefore be used for modeling LixCoO2‐electrode batteries as well as low voltage nonvolatile redox transistors for neuromorphic computing architectures.  相似文献   

15.
Herein, the effect of the insertion of a thin dielectric HfO2:Al2O3 (HAO) layer at different positions in the Pt/0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BCZT)/Au structure on the energy storage performance of the capacitors is investigated. A high storage performance is achieved through the insertion of a HAO layer between BCZT and Au layers. The insertion of the dielectric layer causes a depolarization field which results in a high linearity hysteresis loop with low energy dissipation. The Pt/BCZT/HAO/Au capacitors show an impressive energy storage density of 99.8 J cm?3 and efficiency of 71.0%, at an applied electric field of 750 kV cm?1. Further, no significant change in the energy storage properties is observed after passing 108 switching cycles through the capacitor. The presence of resistive switching (RS) in leakage current characteristics confirms the strong charge coupling between ferroelectric and insulator layers. The same trend of the RS ratio and the energy storage performance with the variation of the architecture of the devices suggests that the energy storage properties can be improved through the charge coupling between the layers. By combining ferroelectrics and dielectrics into one single structure, the proposed strategy provides an efficient way for developing highly efficient energy storage capacitors.  相似文献   

16.
Over the past decade, wood‐derived materials have attracted enormous interest for both fundamental research and practical applications in various functional devices. In addition to being renewable, environmentally benign, naturally abundant, and biodegradable, wood‐derived materials have several unique advantages, including hierarchically porous structures, excellent mechanical flexibility and integrity, and tunable multifunctionality, making them ideally suited for efficient energy storage and conversion. In this article, the latest advances in the development of wood‐derived materials are discussed for electrochemical energy storage systems and devices (e.g., supercapacitors and rechargeable batteries), highlighting their micro/nanostructures, strategies for tailoring the structures and morphologies, as well as their impact on electrochemical performance (energy and power density and long‐term durability). Furthermore, the scientific and technical challenges, together with new directions of future research in this exciting field, are also outlined for electrochemical energy storage applications.  相似文献   

17.
Aprotic Li–O2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li2O2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li2O2 particles and facilitate their decomposition due to the confinement of insulating Li2O2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg?1cell. This study provides an effective approach to increase the practical specific energy for Li–O2 batteries by constructing 3D‐printed framework cathodes.  相似文献   

18.
The synthesis of a new type of redox‐active covalent triazine framework (rCTF) material, which is promising as an anode for Li‐ion batteries, is reported. After activation, it has a capacity up to ≈1190 mAh g?1 at 0.5C with a current density of 300 mA g?1 and a high cycling stability of over 1000 discharge/charge cycles with a stable Coulombic efficiency in an rCTF/Li half‐cell. This rCTF has a high rate performance, and at a charging rate of 20C with a current density of 12 A g?1 and it functions well for over 1000 discharge/charge cycles with a reversible capacity of over 500 mAh g?1. By electrochemical analysis and theoretical calculations, it is found that its lithium‐storage mechanism involves multi‐electron redox‐reactions at anthraquinone, triazine, and benzene rings by the accommodation of Li. The structural features and progressively increased structural disorder of the rCTF increase the kinetics of infiltration and significantly shortens the activation period, yielding fast‐charging Li‐ion half and full cells even at a high capacity loading.  相似文献   

19.
Hybrid potassium‐ion capacitors (KICs) show great promise for large‐scale storage on the power grid because of cost advantages, the weaker Lewis acidity of K+ and low redox potential of K+/K. However, a huge challenge remains for designing high‐performance K+ storage materials since K+ ions are heavier and larger than Li+ and Na+. Herein, the synthesis of hierarchical Ca0.5Ti2(PO4)3@C microspheres by use of the electrospraying method is reported. Benefiting from the rich vacancies in the crystal structure and rational nanostructural design, the hybrid Ca0.5Ti2(PO4)3@C electrode delivers a high reversible capacity (239 mA h g?1) and superior rate performance (63 mA h g?1 at 5 A g?1). Moreover, the KIC employing a Ca0.5Ti2(PO4)3@C anode and activated carbon cathode, affords a high energy/power density (80 W h kg?1 and 5144 W kg?1) in a potential window of 1.0–4.0 V, as well as a long lifespan of over 4000 cycles. In addition, in situ X‐ray diffraction is used to unravel the structural transition in Ca0.5Ti2(PO4)3, suggesting a two‐phase transition above 0.5 V during the initial discharge and solid solution processes during the subsequent K+ insertion/extraction. The present study demonstrates a low‐cost potassium‐based energy storage device with high energy/power densities and a long lifespan.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号