首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
A novel hierarchical structured photoanode based on metal–organic frameworks (MOFs)‐derived porous Co3O4‐modified TiO2 nanorod array grown on Si (MOFs‐derived Co3O4/TiO2/Si) is developed as photoanode for efficiently photoelectrochemical (PEC) water oxidation. The ternary Co3O4/TiO2/Si heterojunction displays enhanced carrier separation performance and electron injection efficiency. In the ternary system, an abnormal type‐II heterojunction between TiO2 and Si is introduced, because the conduction band and valence band position of Si are higher than those of TiO2, the photogenerated electrons from TiO2 will rapidly recombine with the photogenerated holes from Si, thus leading to an efficient separation of photogenerated electrons from Si/holes from TiO2 at the TiO2/Si interface, greatly improving the separation efficiency of photogenerated hole within TiO2 and enhances the photogenerated electron injection efficiency in Si. While the MOFs‐derived Co3O4 obviously improves the optical‐response performance and surface water oxidation kinetics due to the large specific surface area and porous channel structure. Compared with MOFs‐derived Co3O4/TiO2/FTO photoanode, the synergistic function in the MOFs‐derived Co3O4/TiO2/Si NR photoanode brings greatly enhanced photoconversion efficiency of 0.54% (1.04 V vs reversible hydrogen electrode) and photocurrent density of 2.71 mA cm?2 in alkaline electrolyte. This work provides promising methods for constructing high‐performance PEC water splitting photoanode based on MOFs‐derived materials.  相似文献   

2.
The photoelectrocatalytic urea oxidation reaction (PEC-UOR) holds a great promise for the wastewater remediation and energy production. However, the low efficiency of semiconductor/cocatalysts type photoanodes for UOR restricts their applications in photoelectrocatalytic system. Herein, a new semiconductor/cocatalyst, Ni2P clusters sensitized TiO2 nanotube arrays photoanode (Ni2P/TiO2-NTAs) for PEC-UOR with high efficiency are developed. The 1D TiO2-NTAs structure accelerates urea molecules diffusion and promotes CO2 gas release at the electrode interface. Meanwhile, Ni2P is also beneficial to urea molecule absorption and CO2 desorption and enable to lower the energy barrier for amine (N H) dehydrogenation. Furthermore, the robust interfacial charge transfer pathway between Ni2P and TiO2 interface promotes the separation of photogenerated electrons and holes and the transfer of photogenerated electrons from Ni2P to TiO2. Therefore, this photoanode shows excellent PEC-UOR performance with the potential of 1.43 V versus reversible hydrogen electrode (RHE) when the current density reaches 10 mA cm−2, which is much lower than that of 2.24 V versus RHE and 1.58 V versus RHE for TiO2-NTAs and Ni(OH)2/TiO2-NTAs, respectively.  相似文献   

3.
A series of anatase TiO2‐based nanocomposite incorporated with plasma‐modified multi‐walled carbon nanotubes (MWNTs) was prepared by physical blending and shows its capability for efficient electron transport when used as photoanode in dye‐sensitized solar cells (DSSCs). These MWNTs characterized with good dispersal performance were obtained by functionalization technique via in situ plasma treatment and subsequent grafting with maleic anhydride (MA) onto the external walls reported previously. Compared with the conventional DSSCs, the TiO2 film with 1D carbon nanotubes possesses more outstanding ability to transport electrons injected from the excited dye within the device under illumination. As a result, at an optimum addition of 0.3 wt% MWNTs‐MA in TiO2 matrix, the photocurrent–voltage (J–V) characteristics showed a significant increase in the short‐circuit photocurrent (Jsc) of 50%, leading to an increase in overall solar conversion efficiency by a factor of 1.5. Electrochemical impedance spectroscopy analyses reveal that the MWNTs‐MA/TiO2 incur smaller resistances at the photoanode in assembled DSSCs when compared with those in the anatase titania DSSCs. These features suggest that the conducting properties of the MWNTs‐MA within the anodes are crucial for achieving a higher transport rate for photo‐induced electrons in TiO2 layer by exhibiting lower resistance in the porous network and hence retard charge recombination that could result in poor conversion efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Unimorph cantilevers are made from 0.5BaTiO3‐0.5Sm2O3 (BTO‐SmO) self‐assembled vertical heteroepitaxial nanocomposite thin films, grown by PLD on (001) SrTiO3 single crystal substrates. The films remain piezoelectric up to at least 250 °C without losing any actuation. The longitudinal piezoelectric coefficient, d33, is ≈45 to 50 pm V?1 measured from room temperature to 250 °C. The transverse piezoelectric coefficient, d31, a key parameter of actuator performance, exceeds PZT (Pb1–xZrxTiO3) films at >200 pm V?1. Since the d31 coefficient was found to be positive, this opens up exciting new applications opportunities. The possible reasons for d31 > 0 are discussed in the light of 3D strain control in the nanocomposites.  相似文献   

5.
In this paper, a way of utilizing thin and conformal overlayer of titanium dioxide on an insulating mesoporous template as a photoanode for dye‐sensitized solar cells is presented. Different thicknesses of TiO2 ranging from 1 to 15 nm are deposited on the surface of the template by atomic layer deposition. This systematic study helps unraveling the minimum critical thickness of the TiO2 overlayer required to transport the photogenerated electrons efficiently. A merely 6‐nm‐thick TiO2 film on a 3‐μm mesoporous insulating substrate is shown to transport 8 mA/cm2 of photocurrent density along with ≈900 mV of open‐circuit potential when using our standard donor‐π‐acceptor sensitizer and Co(bipyridine) redox mediator.  相似文献   

6.
This paper firstly reports the effect of deoxyribonucleic acid (DNA) molecules extracted from chickpea and wheat plants on the injection/recombination of photogenerated electrons and sensitizing ability of dye‐sensitized solar cells (DSSCs). These high‐yield DNA molecules are applied as both linker bridging unit as well as thin tunneling barrier (TTB) at titanium dioxide (TiO2 )/dye interface, to build up high‐efficient DSSCs. With its favorable energy levels, effective linker bridging role, and double helix structure, bifunctional DNA modifier shows an efficient electron injection, suppressed charge recombination, longer electron lifetime, and higher light harvesting efficiency, which leads to higher photovoltaic performance. In particular, a photoconversion efficiency (PCE) of 9.23% is achieved by the binary chickpea and wheat DNA‐modified TiO2 (CW@TiO2) photoanode. Furthermore, time‐resolved fluorescence spectroscopy measurements confirm a better electron transfer kinetics for DNA‐modified TiO2 photoanodes, implying a higher electron transfer rate (kET). This work highlights a great contribution for the photoanodes that are linked with DNA molecule, which act as both bridging unit and TTB to control the charge recombination and injection dynamics, and hence, boost the photovoltaic performance in the DSSCs.  相似文献   

7.
One‐dimensional (1D) nanostructures of TiO2 are grown directly on transparent, conductive glass substrate using hydrothermal/solvothermal methods. When employed as a photoanode in photoelectrochemical cells, the vertically aligned TiO2 nanorod array exhibits slower charge recombination at electrolyte interface as compared to mesoscopic TiO2 particulate film. Electrochemical deposition of CdSe onto TiO2 nanorod array is carried out to extend absorption into visible light region. The role of CdSe‐sensitized, 1D rutile TiO2 architecture in the solar cell design is discussed.  相似文献   

8.
Separation and transfer of photogenerated charge carriers are key elements in designing photocatalysts. TiO2 in numerous geometries has been for many years the most studied photocatalyst. To overcome kinetic limitations and achieve swift charge transfer, TiO2 has been widely investigated with cocatalysts that are commonly randomly placed nanoparticles on a TiO2 surface. The poor control over cocatalyst placement in powder technology approaches can drastically hamper the photocatalytic efficiencies. Here in contrast it is shown that the site‐selective placement of suitable charge‐separation and charge‐transfer cocatalysts on a defined TiO2 nanotube morphology can provide an enhancement of the photocatalytic reactivity. A TiO2–WO3–Au electron‐transfer cascade photocatalyst is designed with nanoscale precision for H2 production on TiO2 nanotube arrays. Key aspects in the construction are the placement of the WO3/Au element at the nanotube top by site‐selective deposition and self‐ordered thermal dewetting of Au. In the ideal configuration, WO3 acts as a buffer layer for TiO2 conduction band electrons, allowing for their efficient transfer to the Au nanoparticles and then to a suitable environment for H2 generation, while TiO2 holes due to intrinsic upward band bending in the nanotube walls and short diffusion length undergo a facilitated transfer to the electrolyte where oxidation of hole‐scavenger molecules takes place. These photocatalytic structures can achieve H2 generation rates significantly higher than any individual cocatalyst–TiO2 combination, including a classic noble metal–TiO2 configuration.  相似文献   

9.
TiO2‐based materials are cheap and stable choices for photoelectrochemical devices. However, the activity is still limited by the inefficient charge extraction. Here a highly conductive cable‐like bicomponent titania photoanode, consisting of reduced anatase‐coated TiO2‐B nanowires, is proposed to simultaneously establish effective electron and hole transport channels separately, which meets the requirements of electronic dynamics for efficient water splitting. A synergistic effect of charge separation from the built‐in electric field is demonstrated with this 1D TiO2‐B/anatase heterojunction, in which a high electron collection efficiency of up to 97.1% at 0.6 V versus reversible hydrogen electrode is achieved. The efficient electron collection approaching the limitation is also attributed to the large electron conducting region in the photoanode. Moreover, the O‐deficient amorphous layer is found to be more catalytic toward the oxygen evolution reaction through quantifying rate constants for charge recombination and charge transfer. It can reduce onset potential and suppress charge‐carrier recombination simultaneously, prompting surface hole collection efficiency up to 95% at 0.6 V versus reversible hydrogen electrode.  相似文献   

10.
Pretreatment of H2O2 is performed on titanium (Ti) foil as an efficient photoanode substrate for dye‐sensitized solar cell (DSSC). The H2O2‐treated Ti shows high surface area because of the formation of networked TiO2 nanosheets, which enhances electrical contact between screen‐printed TiO2 nanoparticles and Ti foil. Electron transfer on the photoanode is improved, as identified by reduced charge transfer resistance and improved electron transport properties. Compared with DSSC based on non‐treated Ti photoanode, DSSC with this H2O2‐treated Ti photoanode exhibits remarkable increases in short‐circuit current density (from 8.55 to 14.38 mA/cm2) and energy conversion efficiency (from 4.68 to 7.10%) under AM1.5 back‐side illumination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A multicolor photodetector based on the heterojunction of n‐Si(111)/TiO2 nanorod arrays responding to both ultraviolet (UV) and visible light is developed by utilizing interface engineering. The photodetector is fabricated via a consecutive process including chemical etching, magnetron sputtering, hydrothermal growth, and assembling. Under a small reverse bias (from 0 to ≈?2 V), only the photogenerated electrons in TiO2 are possible to tunnel through the low barrier of ΔEC, and the device only responses to UV light; as the reverse bias increases, the photogenerated holes in Si also begin to tunnel through the high barrier of ΔEV. As a result, the device is demonstrated to have the capacity to detect both UV and visible lights, which is useful in the fields of rapid detection and multicolor imaging. It has been also observed that the crystal orientation of Si affects the characteristics of bias‐controlled spectral response of the n‐Si/TiO2 heterojunctions.  相似文献   

12.
A novel, in situ simultaneous reduction‐hydrolysis technique (SRH) is developed for fabrication of TiO2‐‐graphene hybrid nanosheets in a binary ethylenediamine (En)/H2O solvent. The SRH technique is based on the mechanism of the simultaneous reduction of graphene oxide (GO) into graphene by En and the formation of TiO2 nanoparticles through hydrolysis of titanium (IV) (ammonium lactato) dihydroxybis, subsequently in situ loading onto graphene through chemical bonds (Ti–O–C bond) to form 2D sandwich‐like nanostructure. The dispersion of TiO2 hinders the collapse and restacking of exfoliated sheets of graphene during reduction process. In contrast with prevenient G‐TiO2 nanocomposites, abundant Ti3+ is detected on the surface of TiO2 of the present hybrid, caused by reducing agent En. The Ti3+ sites on the surface can serve as sites for trapping photogenerated electrons to prevent recombination of electron–hole pairs. The high photocatalytic activity of G‐TiO2 hybrid is confirmed by photocatalytic conversion of CO2 to valuable hydrocarbons (CH4 and C2H6) in the presence of water vapor. The synergistic effect of the surface‐Ti3+ sites and graphene favors the generation of C2H6, and the yield of the C2H6 increases with the content of incorporated graphene. The work may open a new doorway for new significant application of graphene for selectively catalytic C–C coupling reaction  相似文献   

13.
TiO2 nanorods are self‐assembled on the graphene oxide (GO) sheets at the water/toluene interface. The self‐assembled GO–TiO2 nanorod composites (GO–TiO2 NRCs) can be dispersed in water. The effective anchoring of TiO2 nanorods on the whole GO sheets is confirmed by transmission electron microscopy (TEM), X‐ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), and thermogravimetric analysis (TGA). The significant increase of photocatalytic activity is confirmed by the degradation of methylene blue (MB) under UV light irridiation. The large enhancement of photocatalytic activity is caused by the effective charge anti‐recombination and the effective absorption of MB on GO. The effective charge transfer from TiO2 to GO sheets is confirmed by the significant photoluminescence quenching of TiO2 nanorods, which can effectively prevent the charge recombination during photocatalytic process. The effective absorption of MB on GO is confirmed by the UV‐vis spectra. The degradation rate of MB in the second cycle is faster than that in the first cycle because of the reduction of GO under UV light irradiation.  相似文献   

14.
Despite recent progress in photo‐electrochemical (PEC) water oxidation systems for TiO2‐based photoanodes, PEC performance improvement is still seriously hampered due to poor carrier transport efficiency and sluggish surface water oxidation kinetics of pristine TiO2. Herein, for the first time a brand new metal–organic framework (MOF)‐derived Co3C nanosheet with narrow bandgap energy is demonstrated, to effectively sensitize TiO2 hollow cages as a heterostructure photoanode for PEC water oxidation. It is found that MOF‐derived Co3C nanosheet with narrow bandgap characteristic can simultaneously accelerate the surface water oxidation kinetics and extend the light harvesting range of pristine TiO2. Meanwhile, a uniquely matched type‐II heterojunction constructed between MOF‐derived Co3C and TiO2 results in an evidently spontaneous e?/h+ separation. MOF‐derived Co3C/TiO2 heterostructure photoanodes bring about drastically improved PEC water oxidation performance. Specifically, MOF‐derived Co3C‐3/TiO2 photoanode with an optimized content of Co3C achieves the highest photocurrent density and charge separation efficiency of 2.6 mA cm?2 and 92.6% at 1.23 V versus reversible hydrogen electrode, corresponding to 201% and 152% improvement compared with pristine TiO2 nanocages. The ingeniously prepared MOF‐derived Co3C carbide with narrow bandgap energy as a cocatalyst paves new way to construct potentially high performance solar‐energy conversion system.  相似文献   

15.
A facile method for preparation of Cr-doped TiO2 nanotubes (Cr–TiO2 NTs) modified with polyaniline (PANI) was developed. The obtained materials were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy. The photoelectrochemical property of PANI/Cr–TiO2 nanotubes was studied by voltammetry, photocurrent and electrochemical impedance spectroscopy (EIS). Using PANI/Cr–TiO2 NTs as photoanode, the removal of p-nitrophenol (PNP) by photoelectrocatalytic oxidation technique was investigated. Compared with Cr–TiO2 NTs, PANI/Cr–TiO2 NTs showed an increased efficiency in the photoelectrocatalytic degradation of PNP. Moreover, photoelectrocatalysis was more efficient for PNP degradation than electrochemical oxidation, direct photolysis, and photocatalysis. The influences of applied bias potential, initial concentration of PNP and solution pH on the photoelectrocatalytic degradation of PNP were investigated. Under optimized conditions, almost all PNP could be degraded on PANI/Cr–TiO2 NTs after 2-h photoelectrocatalytic treatment.  相似文献   

16.
A solid‐state dye‐sensitized solar cell (ssDSSC) with 7.4% efficiency at 100 mW/cm2 is reported. This efficiency is one of the highest observed for N719 dye. High performance is achieved via a honeycomb‐like, organized mesoporous TiO2 photoanode with dual pores, high porosity, good interconnectivity, and excellent light scattering properties. The TiO2 photoanodes are prepared without any TiCl4 treatment via a one‐step, direct self‐assembly of hydrophilically preformed TiO2 nanocrystals and poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer as a titania source and a structure‐directing agent, respectively. Upon controlling the secondary forces between the polymer/TiO2 hybrid and the solvent by varying the amounts of HCl/H2O mixture or toluene, honeycomb‐like structures are generated to improve light scattering properties. Such multifunctional nanostructures with dual pores provide good pore‐filling of solid polymer electrolyte with large volume, enhanced light harvesting and reduced charge recombination, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and electrochemical impedance spectroscopy (EIS) analysis.  相似文献   

17.
As the key component in efficient perovskite solar cells, the electron transport layer (ETL) can selectively collect photogenerated charge carriers produced in perovskite absorbers and prevent the recombination of carriers at interfaces, thus ensuring a high power conversion efficiency. Compared with the conventional single‐ or dual‐layered ETLs, a gradient heterojunction (GHJ) strategy is more attractive to facilitate charge separation because the potential gradient created at an appropriately structured heterojunction can act as a driving force to regulate the electron transport toward a desired direction. Here, a SnO2/TiO2 GHJ interlayer configuration inside the ETL is reported to simultaneously achieve effective extraction and efficient transport of photoelectrons. With such an interlayer configuration, the GHJs formed at the perovskite/ETL interface act collectively to extract photogenerated electrons from the perovskite layer, while GHJs formed at the boundaries of the interconnected SnO2 and TiO2 networks throughout the entire ETL layer can extract electron from the slow electron mobility TiO2 network to the high electron mobility SnO2 network. Devices based on GHJ ETL exhibit a champion power conversion efficiency of 18.08%, which is significantly higher than that obtained from the compact TiO2 ETL constructed under the comparable conditions.  相似文献   

18.
Rapid extraction of photogenerated charge carriers is essential to achieve high efficiencies with perovskite solar cells (PSCs). Here, a new mesoscopic architecture as electron‐selective contact for PSCs featuring 40 nm sized TiO2 beads endowed with mesopores of a few nanometer diameters is introduced. The bimodal pore distribution inherent to these films produces a very large contact area of 200 m2 g?1 whose access by the perovskite light absorber is facilitated by the interstitial voids between the particles. Modification of the TiO2 surface by CsBr further strengthens its interaction with the perovskite. As a result, photogenerated electrons are extracted rapidly producing a very high fill factor of close to 80% a VOC of 1.14 V and a PCE up to 21% with negligible hysteresis.  相似文献   

19.
A novel room‐temperature method for the preparation of porous TiO2 films with high performance in dye‐sensitized solar cells (DSSCs) has been developed. In this method a small amount of TiIV tetraisopropoxide (TTIP) is added to an ethanolic paste of TiO2 nanoparticles, where it hydrolyzes in situ and connects the TiO2 particles to form a homogenous and mechanically stable film of up to 10 μm thickness without crack formation. Residual organics originating from the TTIP were removed by UV–ozone treatment of the films, leading to a remarkable improvement of the cell efficiency. Intensity‐modulated photocurrent/voltage spectroscopy (IMPS/IMVS) showed that the main effect of the UV–ozone treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. The efficiency was further increased by preheating the TiO2 nanoparticles before the paste preparation to remove contaminants originating from the preparation process of the particles. Solar‐to‐electric energy conversion efficiencies of 4.00 and 3.27 % have been achieved for cells with conductive glass and plastic film substrates, respectively, under illumination with AM 1.5 (100 mW cm–2) simulated sunlight.  相似文献   

20.
Well‐crystallized Nb‐doped anatase TiO2 nanoparticles are prepared by a novel synthetic route and successfully used as the photoanode of dye‐sensitized solar cells (DSSCs). The homogenous distribution of Nb in the TiO2 lattice is confirmed by scanning transmission electron microscopy (STEM) elemental mapping and line‐scanning analyses. After Nb doping, the conductivity of the TiO2 powder increases, and its flat‐band potential (Vfb) has a positive shift. The energy‐conversion efficiency of a cell based on 5.0 mol% Nb‐doped TiO2 is significantly better, by about 18.2%, compared to that of a cell based on undoped TiO2. The as‐prepared Nb‐doped TiO2 material is proven in detail to be a better photoanode material than pure TiO2, and this new synthetic approach using a water‐soluble precursor provides a simple and versatile way to prepare excellent photoanode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号