首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3 nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104 S m?1. The films demonstrate a room temperature power factor of 730 µW m?1 K?2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.  相似文献   

2.
Solution‐phase exfoliated graphene has always been an attractive material for flexible thermoelectric applications, but traditional oxidative routes suffer from poor flake quality and a lack of quality doping techniques to make complementary n‐type and p‐type films. Here, it is demonstrated that by changing the adsorbed surfactant during the intercalation‐exfoliation process (polyvinylpyrrolidone for n‐type, pyrenebutyric acid for p‐type), both extremely high electrical conductivity (3010 and 2330 S cm?1) and high Seebeck coefficients (53.1 and ?45.5 µV K?1) can be achieved. The result is that both of these films show remarkable power factors, over 600 µW m?1 K?2 at room temperature, which is over an order of magnitude better than that in previous works demonstrating complementary n‐type and p‐type graphene thermoelectric films. Based on these films, a full all‐graphene thermoelectric device is constructed as a proof of concept, where a peak power of 5.0 nW is recorded at a temperature difference of 50 K.  相似文献   

3.
Organic hybrid supercapacitors that consist of a battery electrode and a capacitive electrode show greatly improved energy density, but their power density is generally limited by the poor rate capability of battery‐type electrodes. In addition, flexible organic hybrid supercapacitors are rarely reported. To address the above issues, herein an in‐plane assembled orthorhombic Nb2O5 nanorod film anode with high‐rate Li+ intercalation to develop a flexible Li‐ion hybrid capacitor (LIC) is reported. The binder‐/additive‐free film exhibits excellent rate capability (≈73% capacity retention with the rate increased from 0.5 to 20 C) and good cycling stability (>2500 times). Kinetic analyses reveal that the high rate performance is mainly attributed to the excellent in‐plane assembly of interconnected single‐crystalline Nb2O5 nanorods on the current collector, ensuring fast electron transport, facile Li‐ion migration in the porous film, and greatly reduced ion‐diffusion length. Using such a Nb2O5 film as anode and commercial activated carbon as cathode, a flexible LIC is designed. It delivers both high gravimetric and high volumetric energy/power densities (≈95.55 Wh kg?1/5350.9 W kg?1; 6.7 mW h cm?3/374.63 mW cm?3), surpassing previous typical Li‐intercalation electrode‐based LICs. Furthermore, this LIC device still keeps good electrochemical attributes even under serious bending states (30°–180°).  相似文献   

4.
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m?1 K?2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.  相似文献   

5.
Iron oxides are promising to be utilized in rechargeable alkaline battery with high capacity upon complete redox reaction (Fe3+ Fe0). However, their practical application has been hampered by the poor structural stability during cycling, presenting a challenge that is particularly huge when binder‐free electrode is employed. This paper proposes a “carbon shell‐protection” solution and reports on a ferroferric oxide–carbon (Fe3O4–C) binder‐free nanorod array anode exhibiting much improved cyclic stability (from only hundreds of times to >5000 times), excellent rate performance, and a high capacity of ≈7776.36 C cm?3 (≈0.4278 C cm?2; 247.5 mAh g?1, 71.4% of the theoretical value) in alkaline electrolyte. Furthermore, by pairing with a capacitive carbon nanotubes (CNTs) film cathode, a unique flexible solid‐state rechargeable alkaline battery‐supercapacitor hybrid device (≈360 μm thickness) is assembled. It delivers high energy and power densities (1.56 mWh cm?3; 0.48 W cm?3/≈4.8 s charging), surpassing many recently reported flexible supercapacitors. The highest energy density value even approaches that of Li thin‐film batteries and is about several times that of the commercial 5.5 V/100 mF supercapacitor. In particular, the hybrid device still maintains good electrochemical attributes in cases of substantially bending, high mechanical pressure, and elevated temperature (up to 80 °C), demonstrating high environmental suitability.  相似文献   

6.
The developments of rationally designed binder‐free metal chalcogenides decorated flexible electrodes are of paramount importance for advanced energy storage devices. Herein, binder‐free patronite (VS4) flower‐like nanostructures are facilely fabricated on a carbon cloth (CC) using a facile hydrothermal method for high‐performance supercapacitors. The growth density and morphology of VS4 nanostructures on CC are also controlled by varying the concentrations of vanadium and sulfur sources along with the complexing agent in the growth solution. The optimal electrode with an appropriate growth concentration (VS4‐CC@VS‐3) demonstrates a considerable pseudocapacitance performance in the ionic liquid (IL) electrolyte (1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate), with a high operating potential of 2 V. Utilizing VS4‐CC@VS‐3 as both positive and negative electrodes, the IL‐based symmetric supercapacitor is assembled, which demonstrates a high areal capacitance of 536 mF cm?2 (206 F g?1) and excellent cycling durability (93%) with superior energy and power densities of 74.4 µWh cm?2 (28.6 Wh kg?1) and 10154 µW cm?2 (9340 W kg?1), respectively. As for the high energy storage performance, the device stably energizes various portable electronic applications for a long time, which make the fabricated composite material open up news for the fabrication of fabrics supported binder‐free chalcogenides for high‐performance energy storage devices.  相似文献   

7.
Enhancement of thermopower is achieved by doping the narrow‐band semiconductor Ag6.52Sb6.52Ge36.96Te50 (acronym TAGS‐85), one of the best p‐type thermoelectric materials, with 1 or 2% of the rare earth dysprosium (Dy). Evidence for the incorporation of Dy into the lattice is provided by X‐ray diffraction and increased orientation‐dependent local fields detected by 125Te NMR spectroscopy. Since Dy has a stable electronic configuration, the enhancement cannot be attributed to 4f‐electron states formed near the Fermi level. It is likely that the enhancement is due to a small reduction in the carrier concentration, detected by 125Te NMR spectroscopy, but mostly due to energy filtering of the carriers by potential barriers formed in the lattice by Dy, which has large both atomic size and localized magnetic moment. The interplay between the thermopower, the electrical resistivity, and the thermal conductivity of TAGS‐85 doped with Dy results in an enhancement of the power factor (PF) and the thermoelectric figure of merit (ZT) at 730 K, from PF = 28 μW cm?1 K?2 and ZT ≤ 1.3 in TAGS‐85 to PF = 35 μW cm?1 K?2 and ZT ≥ 1.5 in TAGS‐85 doped with 1 or 2% Dy for Ge. This makes TAGS‐85 doped with Dy a promising material for thermoelectric power generation.  相似文献   

8.
Wire‐shaped electrodes for solid‐state cable‐type supercapacitors (SSCTS) with high device capacitance and ultrahigh rate capability are prepared by depositing poly(3,4‐ethylenedioxythiophene) onto self‐doped TiO2 nanotubes (D‐TiO2) aligned on Ti wire via a well‐controlled electrochemical process. The large surface area, short ion diffusion path, and high electrical conductivity of these rationally engineered electrodes all contribute to the energy storage performance of SSCTS. The cyclic voltammetric studies show the good energy storage ability of the SSCTS even at an ultrahigh scan rate of 1000 V s?1, which reveals the excellent instantaneous power characteristics of the device. The capacitance of 1.1 V SSCTS obtained from the charge–discharge measurements is 208.36 µF cm?1 at a discharge current of 100 µA cm?1 and 152.36 µF cm?1 at a discharge current of 2000 µA cm?1, respectively, indicating the ultrahigh rate capability. Furthermore, the SSCTS shows superior cyclic stability during long‐term (20 000 cycles) cycling, and also maintains excellent performance when it is subjected to bending and succeeding straightening process.  相似文献   

9.
p-Type Bi0.45Sb1.55Te3 thermoelectric (TE) thin films have been prepared at room temperature by a magnetron cosputtering process. The effect of postannealing on the microstructure and TE properties of Bi0.45Sb1.55Te3 films has been investigated in the temperature range from room temperature to 350°C. x-Ray diffraction analysis shows that the annealed films have polycrystalline rhombohedral crystal structure, and the average grain size increases from 36?nm to 64?nm with increasing annealing temperature from room temperature to 350°C. Electron probe microanalysis shows that annealing above 250°C can cause Te reevaporation, which induces porous thin films and dramatically affects electrical transport properties of the thin films. TE properties of the films have been investigated at room temperature. The hole concentration shows a trend from descent to ascent and has a minimum value at the annealing temperature of 200°C, while the Seebeck coefficient shows an opposite trend and a maximum value of 245?μV?K?1. The electrical resistivity monotonically decreases from 19.8?mΩ?cm to 1.4?mΩ?cm with increasing annealing temperature. Correspondingly, a maximum value of power factor, 27.4?μW?K?2?cm?1, was obtained at the annealing temperature of 250°C.  相似文献   

10.
An approach for fabrication of highly (0?0?l)-textured Sb2Te3 thin film with layered structure by the magnetron sputtering method is reported. The composition, microstructure, and thermoelectric properties of the thin films have been characterized and measured by x-ray diffraction, scanning electron microscopy with energy-dispersive x-ray spectroscopy, and a thermoelectric (TE) measurement system, respectively. The results show that well-oriented (0?0?l) Sb2Te3 thin film with layered structure is beneficial for improvement of thermoelectric properties, being a promising choice for planar TE devices. The power generation and cooling performance of a layered p-Sb2Te3 film device are superior to those of the ordinary thin-film device. For a typical parallel device with 38 layered Sb2Te3 film elements, the output voltage, maximum power, and corresponding power density are up to 10.3?mV, 11.1?μW, and 73?mW/cm2, respectively, for a temperature difference of 76?K. The device can produce a 6.1?K maximum temperature difference at current of 45?mA. The results prove that enhanced microdevice performance can be realized by integrating (0?0?l)-oriented Sb2Te3 thin films with a layered architecture.  相似文献   

11.
Nickel ethenetetrathiolate (NiETT) polymers are promising n‐type thermoelectric (TE) materials, but their insolubility requires the use of an inert polymer matrix to form films, which is detrimental to the TE performance. In this work, the use of thermal annealing as a post‐treatment process simultaneously enhances the electrical conductivity from 6 ± 2 to 23 ± 3 S cm?1 and thermopower from ?28 ± 3 to ?74 ± 4 µV K?1 for NiETT/PVDF composite films. Spectroscopic characterization reveals that the underlying mechanism involves removal of residual solvent and volatile impurities (carbonyl sulfide and water) in the NiETT polymer backbone. Additionally, microscopic characterization reveals morphological changes caused by a densification of the film that improves chain packing. These effects result in a 25 × improvement in power factor from 0.5 to 12.5 µW m?1 K?2 for NiETT/PVDF films and provide insight into the composition of these coordination polymers that maintain their stability under ambient conditions.  相似文献   

12.
Na‐ion hybrid capacitors consisting of battery‐type anodes and capacitor‐style cathodes are attracting increasing attention on account of the abundance of sodium‐based resources as well as the potential to bridge the gap between batteries (high energy) and supercapacitors (high power). Herein, hierarchically structured carbon materials inspired by multiscale building units of cellulose from nature are assembled with cellulose‐based gel electrolytes into Na‐ion capacitors. Nonporous hard carbon anodes are obtained through the direct thermal pyrolysis of cellulose nanocrystals. Nitrogen‐doped carbon cathodes with a coral‐like hierarchically porous architecture are prepared via hydrothermal carbonization and activation of cellulose microfibrils. The reversible charge capacity of the anode is 256.9 mAh g?1 when operating at 0.1 A g?1 from 0 to 1.5 V versus Na+/Na, and the discharge capacitance of cathodes tested within 1.5 to 4.2 V versus Na+/Na is 212.4 F g?1 at 0.1 A g?1. Utilizing Na+ and ClO4? as charge carriers, the energy density of the full Na‐ion capacitor with two asymmetric carbon electrodes can reach 181 Wh kg?1 at 250 W kg?1, which is one of the highest energy devices reported until now. Combined with macrocellulose‐based gel electrolytes, all‐cellulose‐based quasi‐solid‐state devices are demonstrated possessing additional advantages in terms of overall sustainability.  相似文献   

13.
Flexible energy storage devices are critical components for emerging flexible and wearable electronics. Improving the electrochemical performance of flexible energy storage devices depends largely on development of novel electrode architectures and new systems. Here, a new class of flexible energy storage device called flexible sodium‐ion pseudocapacitors is developed based on 3D‐flexible Na2Ti3O7 nanosheet arrays/carbon textiles (NTO/CT) as anode and flexible reduced graphene oxide film (GFs) as cathode without metal current collectors or conducting additives. The NTO/CT anode with advanced electrode architectures is fabricated by directly growing Na2Ti3O7 nanosheet arrays on carbon textiles with robust adhesion through a simple hydrothermal process. The flexible GF//NTO/CT configuration achieves a high energy density of 55 Wh kg?1 and high power density of 3000 W kg?1. Taking the fully packaged flexible sodium‐ion pseudocapacitors into consideration, the maximum practical volumetric energy density and power density reach up to 1.3 mWh cm?3 and 70 mW cm?3, respectively. In addition, the flexible GF//NTO/CT device demonstrates a stable electrochemical performances with almost 100% capacitance retention under harsh mechanical deformation.  相似文献   

14.
GeTe and (Bi,Sb)2Te3 are two representative thermoelectric (TE) materials showing maximum performance at middle and low temperature, respectively. In order to achieve higher performance over the whole temperature range, their segmented one-leg TE modules are designed and fabricated by one-step spark plasma sintering (SPS). To search for contact and connect layers, the diffusion behavior of Fe, Ni, Cu, and Ti metal layers in GeTe is studied systematically. The results show that Ti with a similar linear expansivity (10.80 × 10−6 K−1) to GeTe, has low contact resistance (3 µΩ cm2) and thin diffusion layer (0.4 µm), and thus is an effective metallization layer for GeTe. The geometric structure of the GeTe/(Bi,Sb)2Te3 segmented one-leg TE module and the ratio of GeTe to (Bi,Sb)2Te3 are determined by finite element simulation method. When the GeTe height ratio is 0.66, its theoretical maximum conversion efficiency (ηmax) can reach 15.9% without considering the thermal radiation and thermal/electrical contact resistance. The fabricated GeTe/(Bi,Sb)2Te3 segmented one-leg TE module showed a ηmax up to 9.5% with a power density ≈ 7.45 mW mm−2, which are relatively high but lower than theoretical predictions, indicating that developing segmented TE modules is an effective approach to enhance TE conversion efficiency.  相似文献   

15.
Bi2Se3, as a Te‐free alternative of room‐temperature state‐of‐the‐art thermoelectric (TE) Bi2Te3, has attracted little attention due to its poor electrical transport properties and high thermal conductivity. Interestingly, BiSbSe3, a product of alloying 50% Sb on Bi sites, shows outstanding electron and phonon transports. BiSbSe3 possesses orthorhombic structure and exhibits multiple conduction bands, which can be activated when the carrier density is increased as high as ≈3.7 × 1020 cm?3 through heavily Br doping, resulting in simultaneously enhancing the electrical conductivities and Seebeck coefficients. Meanwhile, an extremely low thermal conductivity (≈0.6–0.4 W m?1 K?1 at 300–800 K) is found in BiSbSe3. Both first‐principles calculations and elastic properties measurements show the strong anharmonicity and support the ultra‐low thermal conductivity of BiSbSe3. Finally, a maximum dimensionless figure of merit ZT ~ 1.4 at 800 K is achieved in BiSb(Se0.94Br0.06)3, which is comparable to the most n‐type Te‐free TE materials. The present results indicate that BiSbSe3 is a new and a robust candidate for TE power generation in medium‐temperature range.  相似文献   

16.
The effective incorporation of (multi)functional oxides into next‐generation flexible electronics systems requires novel fabrication technologies that enable the direct integration of crystalline oxide layers in them. Unfortunately, this is considerably challenging due to the thermal incompatibility between the crystallization temperatures of metal oxides (>600 °C) and the thermal stability of the flexible polymer substrates conventionally used (<400 °C). Here, it is shown that BiFeO3 thin films can be grown on flexible plastic by solution processing involving three different but complementary strategies to induce the crystallization of the perovskite phase at a lower temperature limit of 325 °C. This “three‐in‐one” approach is based on the synthesis of tailored metal precursors i) with a molecular structure resembling the crystalline structure of the oxide phase, which additionally allows both ii) photochemical and iii) internal combustion reactions taking place in the thin films. The flexible BiFeO3 thin films obtained from a specifically designed molecular complex with N‐methyldiethanolamine yield a large remnant polarization of 17.5 µC cm?2, also showing photovoltaic and photocatalytic effects. This result paves the way for the direct integration of an interesting class of oxides with photoferroelectric properties in flexible devices with multiple applications in information and communication technology, and energy.  相似文献   

17.
For thermoelectric (TE) applications, the surface of exfoliated black phosphorus (BP) can be successfully functionalized with Au nanoparticles (NPs), leading to significantly enhanced TE performance for a controlled Au NP content. A facile and selective decoration of metal species on the defect sites of BP is achieved by the spontaneous formation of Au NPs on the surface of BP through a redox reaction of Au precursors. Such a heterostructure provided by the Au decoration of BP enhances electrical conductivity (from 0.001 to 63.3 S cm?1) through tuning of the charge carrier concentration and retains the initial Seebeck coefficient of BP. Consequently, the TE power factor of the Au‐decorated BP increases significantly to 68.5 µV m?1 K?2, which is 2740 times that of the pristine BP. More significantly, in contrast to the severe degradation of the pristine BP in the air, surface‐functionalized BP exhibits excellent stability upon exposure to air for a long period, which is beneficial for practical TE applications. Given these interesting and unique properties of Au‐decorated BP, a vertical TE generator with a high power output of 79.3 nW (ΔT = 2 °C) is prepared by using the Au‐decorated BP as a p‐type TE material.  相似文献   

18.
Development of flexible thermoelectric devices offers exciting opportunities for wearable applications in consumer electronics, healthcare, human–machine interface, etc. Despite the increased interests and efforts in nanotechnology-enabled flexible thermoelectrics, translating the superior properties of thermoelectric materials from nanoscale to macroscale and reducing the manufacturing costs at the device level remain a major challenge. Here, an economic and scalable inkjet printing method is reported to fabricate high-performance flexible thermoelectric devices. A general templated-directed chemical transformation process is employed to synthesize several types of 1D metal chalcogenide nanowires (e.g., Ag2Te, Cu7Te4, and Bi2Te2.7Se0.3). These nanowires are made into inks suitable for inkjet printing by dispersing them in ethanol without any additives. As a showcase for thermoelectric applications, fully inkjet-printed Ag2Te-based flexible films and devices are prepared. The printed films exhibit a power factor of 493.8 µW m−1 K−2 at 400 K and the printed devices demonstrate a maximum power density of 0.9 µW cm−2 K−2, both of which are significantly higher than those reported in state-of-the-art inkjet-printed thermoelectrics. The protocols of metal chalcogenide ink formulations, as well as printing are general and extendable to a wider range of material systems, suggesting the great potential of this printing platform for scalable manufacturing of next-generation, high-performance flexible thermoelectric devices.  相似文献   

19.
We report a simplified sequential evaporation route that can deposit compositionally controllable Bi-Te thermoelectric (TE) thin films without the need for a highly controlled facility. Te and Bi granules were used as starting materials, with their ratio being adjusted to obtain Bi-Te films with different compositions and thicknesses. The as-evaporated and annealed films were subjected to structural and morphological analysis, and their transport properties were measured. X-Ray diffraction data revealed multiple phases for most films. Energy-dispersive x-ray spectroscopy showed that the film composition was Te-enriched due to the large vapor pressure difference of Te and Bi. A Bi2Te3 single phase was obtained in the annealed films, having nominal composition of BiTe1.2. The existence of impurity phases, such as Bi4Te3 or elemental Te, was found in all the as-evaporated films and in the annealed films with other nominal Te/Bi ratios, which degraded the TE properties of the films by increasing their electrical conductivity and reducing their Seebeck coefficient. A pure Bi2Te3 film with nominal Te/Bi ratio of 1.2 exhibited a maximum power factor of 7.9 × 10?4 W m?1 K2 after annealing at 200°C. This work demonstrated a simple, undemanding, reliable method to deposit Bi-Te-based TE thin films that can be utilized to fabricate low-cost TE microgenerators.  相似文献   

20.
Fiber‐shaped micro‐supercapacitors (micro‐SCs) have attracted enormous interest in wearable electronics due to high flexibility and weavability. However, they usually present a low energy density because of inhomogeneity and less pores. Here, we demonstrate a microfluidic‐directed strategy to synthesize homogeneous nitrogen‐doped porous graphene fibers. The porous fibers‐based micro‐SCs utilize solid‐state phosphoric acid/polyvinyl alcohol (H3PO4/PVA) and 1‐ethyl‐3‐methylimidazolium tetrafluoroborate/poly(vinylidenefluoride‐co‐hexafluoropropylene) (EMIBF4/PVDF‐HFP) electrolytes, which show significant improvements in electrochemical performances. Ultralarge capacitance (1132 mF cm?2), high cycling‐stability, and long‐term bending‐durability are achieved based on H3PO4/PVA. Additionally, high energy densities of 95.7–46.9 µWh cm?2 at power densities of 1.5–15 W cm?2 are obtained in EMIBF4/PVDF‐HFP. The key to higher performances stems from microfluidic‐controlled fibers with a uniformly porous network, large specific surface area (388.6 m2 g?1), optimal pyridinic nitrogen (2.44%), and high electric conductivity (30785 S m?1) for faster ion diffusion and flooding accommodation. By taking advantage of these remarkable merits, this study integrates micro‐SCs into flexible and fabric substrates to power audio–visual electronics. The main aim is to clarify the important role of microfluidic techniques toward the architecture of electrodes and promote development of wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号