首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The cover picture illustrates excited state dynamics of semiconducting single‐walled carbon nanotubes studied theoretically. Sergai Tretiak and Svetlana Kilina report on p. 3405 that absorption of the light quantum leads to spatially delocalized photoexcitation, which can be described as tightly bound excitons and characterized by 2D plots of transition density. The photoexcitation is coupled to the vibrational degrees of freedom, leading to complex exciton‐phonon dynamics, which can be monitored experimentally using ultrafast spectroscopic probes. We review quantum‐chemical studies of the excited‐state electronic structure of finite‐size semiconducting single‐walled carbon nanotubes (SWCNTs) using methodologies previously successfully applied to describe conjugated polymers and other organic molecular materials. The results of our simulations are in quantitative agreement with available spectroscopic data and show intricate details of excited‐state properties and photoinduced vibrational dynamics in carbon nanotubes. We analyze in detail the nature of strongly bound first and second excitons in SWCNTs for a number of different tubes, emphasizing emerging size‐scaling laws. Characteristic delocalization properties of excited states are identified by the underlying photoinduced changes in charge densities and bond orders. Due to the rigid structure, exciton–phonon coupling is much weaker in SWCNTs compared to typical molecular materials. Yet we find that, in the ground state, a SWCNT's surface experiences the corrugation associated with electron–phonon interactions. Vibrational relaxation following photoexcitation reduces this corrugation, leading to a local distortion of the tube surface, which is similar to the formation of self‐trapped excitons in conjugated polymers. The calculated associated Stokes shift increases with enlargement of the tube diameters. Such exciton vibrational phenomena are possible to detect experimentally, allowing for better understanding of photoinduced electronic dynamics in nanotube materials.  相似文献   

4.
Polyhedral oligomeric silsesquioxanes (POSS) anchored to poly(2‐methoxy‐5‐(2‐ethylhexyloxy)‐1.4‐phenylenevinylene) (MEH‐PPV) (MEH‐PPV–POSS), and to poly(9,9‐dihexylfluorenyl‐2,7‐diyl) (PFO) (PFO–POSS) were synthesized. Compared with the corresponding parent polymers, MEH‐PPV and PFO, MEH‐PPV–POSS and PFO–POSS have better thermal stability. MEH‐PPV–POSS and MEH‐PPV have identical absorption and photoluminescent (PL) spectra, both in solution and as thin films. They also have identical electroluminescent (EL) spectra. Devices made from MEH‐PPV–POSS exhibit higher brightness (1320 cd m–2 at 3.5 V) and higher external quantum efficiency (ηext = 2.2 % photons per electron) compared to MEH‐PPV (230 cd m–2 at 3.5 V and ηext = 1.5 % ph el–1). Compared with PFO in the same device configuration, PFO–POSS has improved blue EL emission and higher ηext.  相似文献   

5.
Highly regioregular (RR) poly(3‐hexylthiophene)s PHTs are known to exhibit excellent electrical properties in comparison to chemically identical but regiorandom (rr) PHTs. In this study, distinct RR (97% and 55%)‐graded PHTs are subjected to solution blending to spontaneously separate the high‐RR PHT chains from the low‐RR PHT media and develop highly conjugated nanodomains in both solution and film. In the spun‐cast blend films, the rr PHT matrix imparts sufficient deformability of the channel layer required for stretchable organic thin‐film transistors (OTFTs), compared to neat RR PHTs and blends with a deformable polymer. OTFTs including RR PHT/rr PHT blend films show excellent hole mobility (µ) values up to 0.13 cm2 V?1 s?1, surpassing that of the best RR PHT films (0.026 cm2 V?1 s?1) fabricated by ultrasound solution pretreatment. Furthermore, a 50% stretched RR PHT/rr PHT film maintains ≈55% of its µ value at no strain, while RR PHT films show a sudden decrease in µ even at 10% stretch. The simple blending approach imparts deformability to π‐conjugated polymer films for application in stretchable OTFTs.  相似文献   

6.
本文对用蒸发法制备的非晶和多晶碲镉汞(Hg_(1-x)Cd_xTe)薄膜的结构特性及其光学和电学性质进行了研究。在800—2600nm的波长范围内测量了样品的透过率,得到了非晶和多晶状态相应的光学隙分别为1eV以上和0.65eV左右。对非晶样品的退火实验发现,在90—100℃区间退火使非晶样品的结构转变为多晶,同时电阻率突然变小约5个数量级和光学隙由1eV以上突变为0.62eV左右。在20—300K的温度范围内,分别测量了非晶与多晶样品的电阻率,所得结果可用现代非晶半导体理论进行解释。  相似文献   

7.
8.
9.
10.
11.
The operation of resistive switches based on phase‐separated blends of organic ferroelectrics and semiconductors depends significantly on the microstructure of such systems. A wide range of analysis techniques are used to characterize spin‐coated films of the ferroelectric random copolymer poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)], and the semiconducting polymer, regio‐irregular poly(3‐hexylthiophene) (rir‐P3HT). The blend separates into amorphous rir‐P3HT domains embedded in a crystalline P(VDF‐TrFE) matrix. The rir‐P3HT domains are continuous throughout the film, from the substrate/blend interface to the blend/air interface. We also investigate the rir‐P3HT domain size and number as a function of composition and find – unexpectedly – a rather mono‐disperse domain size distribution for a given rir‐P3HT:P(VDF‐TrFE) ratio. The domain size increases with rir‐P3HT content, indicating that the solidification is not dominated by nucleation processes. Spinodal decomposition is therefore more likely to be responsible for the microstructure induced in the rir‐P3HT:P(VDF‐TrFE) blends. Since spinodal decomposition occurs spontaneously without the presence of a nucleation step, this can facilitate processing considerably, since the intricate control of nucleation processes (homogenous or heterogenous) is rendered unnecessary. Measurement of the lateral conductivity of the blends demonstrates that the rir‐P3HT domains are electrically not connected, supporting the microstructural evidence. A perpendicular current through the film is measured using both Au and Ag electrodes as a function of blend composition. A model was used to interpret the electrical transport. The injection for Ag diodes poled into the ON‐state preferentially occurs at the circumference of the rir‐P3HT domains. An accumulation width over which the injection occurs is estimated to be of the order of a few hundred nm.  相似文献   

12.
Epitaxial chromium ferrite (Fe2CrO4), prepared by state‐of‐the‐art oxygen plasma assisted molecular beam epitaxy, is shown to exhibit unusual electronic transport properties driven by the crystallographic structure and composition of the material. Replacing 1/3 of the Fe cations with Cr converts the host ferrimagnet from a metal into a semiconductor by virtue of its fixed valence (3+); Cr substitutes for Fe at B sites in the spinel lattice. By contrast, replacing 2/3 of the Fe cations with Cr results in an insulator. Three candidate conductive paths, all involving electron hopping between Fe2+ and Fe3+, are identified in Fe2CrO4. Moreover, Fe2CrO4 is shown to be photoconductive across the visible portion of the electromagnetic spectrum. As a result, this material is of potential interest for important photo‐electrochemical processes such as water splitting.  相似文献   

13.
(Ba,Sr)TiO3半导化陶瓷PTC效应的改善   总被引:1,自引:0,他引:1  
烧结温度、受主掺杂以及液相添加剂都会改变(Ba,Sr)TiO3陶瓷的PTC效应.结合微观结构变化和理论研究进展,讨论了这3种因素对PTC效应的影响.结果表明,低的烧结温度不利于低的室温电阻率和高的升阻比.高的烧结温度有利于获得高升阻比.MnO2含量的增加和BN的添加,分别从提高有效受主态密度和改善微观结构两方面改善了PTC效应.x(MnO2)由0.04%增加到0.05%,同时x(BN)=2%,在保持室温电阻率几乎不变的情况下,升阻比提高了2.5个数量级,阻温系数从4.0 /10-2·℃-1增加到13.8 /10-2·℃-1.  相似文献   

14.
15.
16.
A promising, general strategy for improving performance of optoelectronic devices based on conjugated polymer semiconductors is to make better use of the fast intrachain transport along the covalently bonded polymer backbone. Little is known, however, about how the recombination rate between electrons and holes would be affected in device structures in which current flow is primarily along the polymer chain. Here a light‐emitting field effect transistor (LFET) structure with a uniaxially aligned semiconducting polymer is used to show that the width and shape of the recombination zone depend strongly on polymer alignment. For alignment of the polymer parallel to the current the emission zone is 5–10 times wider than for perpendicular alignment. 2D drift‐diffusion modeling is used to show that such significant widening of the recombination zone in the case of parallel alignment implies that the recombination rate constant is more than 100 times lower than expected for standard Langevin recombination. On the basis of Monte Carlo modeling it is proposed that such unexpected weak recombination is a result of the significant mobility anisotropy of the aligned polymer. These results provide new fundamental insight into the recombination physics of polymer semiconductors.  相似文献   

17.
The temperature dependence of the electrical characteristics of field‐effect transistors (FETs) based on polymer‐sorted, large‐diameter semiconducting carbon nanotube networks is investigated. The temperature dependences of both the carrier mobility and the source‐drain current in the range of 78 K to 293 K indicate thermally activated, but non‐Arrhenius, charge transport. The hysteresis in the transfer characteristics of FETs shows a simultaneous reduction with decreasing temperature. The hysteresis appears to stem from screening of charges that are transferred from the carbon nanotubes to traps at the surface of the gate dielectric. The temperature dependence of sheet resistance of the carbon nanotube networks, extracted from FET characteristics at constant carrier concentration, specifies fluctuation‐induced tunneling as the mechanism responsible for charge transport, with an activation energy that is dependent on film thickness. Our study indicates inter‐tube tunneling to be the bottleneck and implicates the role of the polymer coating in influencing charge transport in polymer‐sorted carbon nanotube networks.  相似文献   

18.
19.
Semiconducting diblock copolymers of polyethylene (PE) and regioregular poly(3‐hexylthiophene) (P3HT) are demonstrated to exhibit a rich phase behaviour, judicious use of which permitted us to fabricate field‐effect transistors that show saturated charge carrier mobilities, μFET, as high as 2 × 10–2 cm2 V–1 s–1 and ON‐OFF ratios, Ion/Ioff ~ 105 at contents of the insulating PE moiety as high as 90 wt %. In addition, the diblock copolymers display outstanding flexibility and toughness with elongations at break exceeding 600 % and true tensile strengths around 70 MPa, opening the path towards robust and truly flexible electronic components.  相似文献   

20.
半导体聚合物电发光器件   总被引:1,自引:0,他引:1  
半导体聚合物的电发光现象及其广阔的应用前景,激发了人们的研究兴趣,文章介绍了聚合物的结构,器件设计和制备等,并评述了聚合物材料应用前景和聚合物发光二极管的发展状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号