首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“Graphitic” (g)‐C3N4 with a layered structure has the potential of forming graphene‐like nanosheets with unusual physicochemical properties due to weak van der Waals forces between layers. Herein is shown that g‐C3N4 nanosheets with a thickness of around 2 nm can be easily obtained by a simple top‐down strategy, namely, thermal oxidation etching of bulk g‐C3N4 in air. Compared to the bulk g‐C3N4, the highly anisotropic 2D‐nanosheets possess a high specific surface area of 306 m2 g?1, a larger bandgap (by 0.2 eV), improved electron transport ability along the in‐plane direction, and increased lifetime of photoexcited charge carriers because of the quantum confinement effect. As a consequence, the photocatalytic activities of g‐C3N4 nanosheets have been remarkably improved in terms of ?OH radical generation and photocatalytic hydrogen evolution.  相似文献   

2.
Black phosphorus (BP) is an interesting two‐dimensional material with low‐cost and abundant metal‐free properties and is used as one cocatalyst for photocatalytic H2 production. However, the BP quantum dot (BPQD) is not studied. Herein, for the first time, BPQD is introduced as a hole‐migration cocatalyst of layered g‐C3N4 for visible‐light‐driven photocatalytic hydrogen generation. A high‐vacuum stirring method is developed for BPQD loading without the dissociation of BP. The layered BPQD is coupled on the layered g‐C3N4 surface to form a heterojunction structure. The 7% BPQD–C3N4 samples show similar time‐resolved photoluminescence curves as 0.5% Pt–C3N4. The optimum hydrogen rates of the modified sample (7% BPQD–C3N4) are 190, 133, 90, and 10.4 µmol h?1 under simulated sunlight, LED‐405, LED‐420, and LED‐550 nm irradiation, respectively, which are 3.5, 3.6, and 3 times larger than that of the pristine g‐C3N4. Such low‐cost layered system not only optimizes the optical, electrical, and texture properties of the hybrid materials for photocatalytic water splitting to generate hydrogen but also provides ideas for designing novel or easily oxidized candidates by incorporating different available materials with given carriers.  相似文献   

3.
Introducing solar energy into membrane filtration to decrease energy and chemicals consumption represents a promising direction in membrane fields. In this study, a kind of 0D/2D heterojunction is fabricated by depositing biomineralized titanium dioxide (TiO2) nanoparticles with delaminated graphitic carbon nitride (g‐C3N4) nanosheets, and subsequently a kind of 2D heterostructure membrane is fabricated via intercalating g‐C3N4@TiO2 heterojunctions into adjacent graphene oxide (GO) nanosheets by a vacuum‐assisted self‐assembly process. Due to the enlarged interlayer spacing of GO nanosheets, the initial permeation flux of GO/g‐C3N4@TiO2 membrane reaches to 4536 Lm?2 h?1 bar?1, which is more than 40‐fold of GO membranes (101 Lm?2 h?1 bar?1) when utilized for oil/water separation. To solve the sharp permeation flux decline, arising from the adsorption of oil droplets, the a sunlight‐driven self‐cleaning process is followed, maintaining a flux recovery ratio of more than 95% after ten cycles of filtration experiment. The high permeation flux and excellent sunlight‐driven flux recovery of these heterostructure membranes manifest their attractive potential application in water purification.  相似文献   

4.
An efficient visible‐light active photocatalyst of porous CrOx–Ti1.83O4 nanohybrid with a 1:1 type ordered heterostructure is synthesized through a hybridization between a chromia cluster and exfoliated titanate nanosheets. The present nanohybrids are found to have a large surface area (ca. 250–310 m2 g–1) and an intense absorption of visible light, ascribable, respectively, to the formation of a porous structure and the hybridization of titanate with narrow‐bandgap chromium oxide. After the calcination at 400 °C, the nanohybrid shows an enhanced photocatalytic activity to effectively decompose organic compounds under the irradiation of visible light (λ > 420 nm). The present study highlights the exfoliation–restacking route as a very powerful way to develop efficient visible‐light‐harvesting photocatalysts with excellent thermal stability.  相似文献   

5.
Developing high‐efficiency and low‐cost photocatalysts by avoiding expensive noble metals, yet remarkably improving H2 evolution performance, is a great challenge. Noble‐metal‐free catalysts containing Co(Fe)?N?C moieties have been widely reported in recent years for electrochemical oxygen reduction reaction and have also gained noticeable interest for organic transformation. However, to date, no prior studies are available in the literature about the activity of N‐coordinated metal centers for photocatalytic H2 evolution. Herein, a new photocatalyst containing g‐C3N4 decorated with CoP nanodots constructed from low‐cost precursors is reported. It is for the first time revealed that the unique P(δ?)?Co(δ+)?N(δ?) surface bonding states lead to much superior H2 evolution activity (96.2 µmol h?1) compared to noble metal (Pt)‐decorated g‐C3N4 photocatalyst (32.3 µmol h?1). The quantum efficiency of 12.4% at 420 nm is also much higher than the record values (≈2%) of other transition metal cocatalysts‐loaded g‐C3N4. It is believed that this work marks an important step toward developing high‐performance and low‐cost photocatalytic materials for H2 evolution.  相似文献   

6.
Highly efficient, visible‐light‐induced H2 generation can be achieved without the help of a Pt cocatalyst by new hybrid photocatalysts, in which CdS quantum dots (QDs) (particle size ≈2.5 nm) are incorporated in the porous assembly of sub‐nanometer‐thick layered titanate nanosheets. Due to the very‐limited crystal dimension of component semiconductors, the electronic structure of CdS QDs is strongly coupled with that of the layered titanate nanosheets, leading to an efficient electron transfer between them and the enhancement of the CdS photostability. As a consequence of the promoted electron transfer, the photoluminescence of CdS QDs is nearly quenched after hybridization, indicating the almost‐suppression of electron‐hole recombination. These Pt‐cocatalyst‐free, CdS‐layered titanate nanohybrids show much‐higher photocatalytic activity for H2 production than the precursor CdS QDs and layered titanate, which is due to the increased lifetime of the electrons and holes, the decrease of the bandgap energy, and the expansion of the surface area upon hybridization. The observed photocatalytic efficiency of these Pt‐free hybrids (≈1.0 mmol g?1 h?1) is much greater than reported values of other Pt‐free CdS‐TiO2 systems. This finding highlights the validity of 2D semiconductor nanosheets as effective building blocks for exploring efficient visible‐light‐active photocatalysts for H2 production.  相似文献   

7.
Photocatalytic H2O2 evolution through two‐electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf‐vein‐like g‐C3N4 as an efficient photocatalyst for H2O2 evolution is reported, which owns tenable band structure, optimized charge transfer, and selective two‐electron O2 reduction. The mechanism for the regulation of band structure and charge transfer is well studied by combining experiments and theoretical calculations. The H2O2 yield of CN4 (287 µmol h?1) is about 3.3 times higher than that of pristine CN (87 µmol h?1), and the apparent quantum yield for H2O2 evolution over CN4 reaches 27.8% at 420 nm, which is much higher than that for many other current photocatalysts. This work not only provides a novel strategy for the design of photocatalyst with excellent H2O2 evolution efficiency, but also promotes deep understanding for the role of defect and doping sites on photocatalytic activity.  相似文献   

8.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

9.
Graphitic carbon nitride (g-C3N4) have attracted great attention in the field of energy conversion and storage due to its unique layered structure, tunable bandgap, metal-free characteristic, high physicochemical stability, and easy accessibility. 2D g-C3N4 nanosheets have the features of short charge/mass transfer path, abundant reactive sites and easy functionalization, which are beneficial to optimizing their performance in different fields. However, the reviews of the comprehensive applications of 2D g-C3N4 for energy conversion and storage are rare. Herein, this review first introduces the physicochemical properties of bulk g-C3N4 and g-C3N4 nanosheets, and then summarizes the synthetic strategies of 2D g-C3N4 nanosheets in detail, such as thermal oxidation etching, chemical exfoliation, ultrasonication-assisted liquid phase exfoliation, chemical vapor deposition, and others. Emphasis is focused on the rational design and development of 2D g-C3N4 nanosheets for the diversified applications in energy conversion and storage, including photocatalytic H2 evolution, CO2 reduction, electrocatalytic H2 evolution, O2 evolution, O2 reduction, alkali-metal ion batteries, lithium-metal batteries, lithium–sulfur batteries, metal-air batteries, and supercapacitors. Finally, the current challenges and perspectives of 2D g-C3N4 nanosheets for energy conversion and storage applications are discussed.  相似文献   

10.
Developing high‐efficiency and low‐cost photocatalysts by avoiding expensive noble metals, yet remarkably improving H2 evolution performance, is a great challenge. Noble‐metal‐free catalysts containing Co(Fe)? N? C moieties have been widely reported in recent years for electrochemical oxygen reduction reaction and have also gained noticeable interest for organic transformation. However, to date, no prior studies are available in the literature about the activity of N‐coordinated metal centers for photocatalytic H2 evolution. Herein, a new photocatalyst containing g‐C3N4 decorated with CoP nanodots constructed from low‐cost precursors is reported. It is for the first time revealed that the unique P(δ?)? Co(δ+)? N(δ?) surface bonding states lead to much superior H2 evolution activity (96.2 µmol h?1) compared to noble metal (Pt)‐decorated g‐C3N4 photocatalyst (32.3 µmol h?1). The quantum efficiency of 12.4% at 420 nm is also much higher than the record values (≈2%) of other transition metal cocatalysts‐loaded g‐C3N4. It is believed that this work marks an important step toward developing high‐performance and low‐cost photocatalytic materials for H2 evolution.  相似文献   

11.
A novel, in situ simultaneous reduction‐hydrolysis technique (SRH) is developed for fabrication of TiO2‐‐graphene hybrid nanosheets in a binary ethylenediamine (En)/H2O solvent. The SRH technique is based on the mechanism of the simultaneous reduction of graphene oxide (GO) into graphene by En and the formation of TiO2 nanoparticles through hydrolysis of titanium (IV) (ammonium lactato) dihydroxybis, subsequently in situ loading onto graphene through chemical bonds (Ti–O–C bond) to form 2D sandwich‐like nanostructure. The dispersion of TiO2 hinders the collapse and restacking of exfoliated sheets of graphene during reduction process. In contrast with prevenient G‐TiO2 nanocomposites, abundant Ti3+ is detected on the surface of TiO2 of the present hybrid, caused by reducing agent En. The Ti3+ sites on the surface can serve as sites for trapping photogenerated electrons to prevent recombination of electron–hole pairs. The high photocatalytic activity of G‐TiO2 hybrid is confirmed by photocatalytic conversion of CO2 to valuable hydrocarbons (CH4 and C2H6) in the presence of water vapor. The synergistic effect of the surface‐Ti3+ sites and graphene favors the generation of C2H6, and the yield of the C2H6 increases with the content of incorporated graphene. The work may open a new doorway for new significant application of graphene for selectively catalytic C–C coupling reaction  相似文献   

12.
MXenes comprise a new class of solution‐dispersable, 2D nanomaterials formed from transition metal carbides and nitrides such as Ti3C2. Here, it is shown that 2D Ti3C2 can be assembled from aqueous solutions into optical quality, nanometer thin films that, at 6500 S cm?1, surpass the conductivity of other solution‐processed 2D materials, while simultaneously transmitting >97% of visible light per‐nanometer thickness. It is shown that this high conductivity is due to a metal‐like free‐electron density as well as a high degree of coplanar alignment of individual nanosheets achieved through spincasting. Consequently, the spincast films exhibit conductivity over a macroscopic scale that is comparable to the intrinsic conductivity of the constituent 2D sheets. Additionally, optical characterization over the ultraviolet‐to‐near‐infrared range reveals the onset of free‐electron plasma oscillations above 1130 nm. Ti3C2 is therefore a potential building block for plasmonic applications at near‐infrared wavelengths and constitutes the first example of a new class of solution‐processed, carbide‐based 2D optoelectronic materials.  相似文献   

13.
2D transition metal dichalcogenide (TMD) nanosheets, including MoS2, WS2, and TaS2, are used as hole injection layers (HILs) in organic light‐emitting diodes (OLEDs). MoS2, WS2, and TaS2 nanosheets are prepared using an exfoliation by ultrasonication method. The thicknesses and sizes of the TMD nanosheets are measured to be 3.1–4.3 nm and more than 100 nm, respectively. The work functions of the TMD nanosheets increase from 4.4–4.9 to 4.9–5.1 eV following ultraviolet/ozone (UVO) treatment. The turn‐on voltages at 10 cd m?2 for UVO‐treated TMD‐based devices decrease from 7.3–12.8 to 4.3–4.4 V and maximum luminance efficiencies increase from 5.74–9.04 to 12.01–12.66 cd A?1. In addition, this study confirms that the stabilities of the devices in air can be prolonged by using UVO‐treated TMDs as HILs in OLEDs. These results demonstrate the great potential of liquid‐exfoliated TMD nanosheets for use as HILs in OLEDs.  相似文献   

14.
Large‐size 2D black phosphorus (BP) nanosheets have been successfully synthesized by a facile liquid exfoliation method. The as‐prepared BP nanosheets are used to fabricate electrodes for a self‐powered photodetector and exhibit preferable photoresponse activity as well as environmental robustness. Photoelectrochemical (PEC) tests demonstrate that the current density of BP nanosheets can reach up to 265 nA cm?2 under light irradiation, while the dark current densities fluctuate near 1 nA cm?2 in 0.1 M KOH. UV–vis and Raman spectra are carried out and confirm the inherent optical and physical properties of BP nanosheets. In addition, the cycle stability measurement exhibits no detectable distinction after processing 50 and 100 cycles, while an excellent on/off behavior is still preserved even after one month. Furthermore, the PEC performance of BP nanosheets‐based photodetector is evaluated in various KOH concentrations, which demonstrates that the as‐prepared BP nanosheets may have a great potential application in self‐powered photodetector. It is anticipated that the present work can provide fundamental acknowledgement of the performance of a PEC‐type BP nanosheets‐based photodetector, offering extendable availabilities for 2D BP‐based heterostructures to construct high‐performance PEC devices.  相似文献   

15.
Wound healing is affected by bacterial infection and related inflammation, cell proliferation and differentiation, and tissue remodeling. Current antibiotics therapy cannot promote wound healing and kill bacteria at the same time. Herein, hybrid nanosheets of g‐C3N4‐Zn2+@graphene oxide (SCN‐Zn2+@GO) are prepared by combining Zn2+ doped sheet‐like g‐C3N4 with graphene oxide via electrostatic bonding and π–π stacking interactions to assist wound healing and kill bacteria simultaneously by short‐time exposure to 660 and 808 nm light. The gene expressions of matrix metalloproteinase‐2, type I collagen, type III collagen, and interleukin β in fibroblasts are regulated by GO and released Zn2+, which can accelerate wound healing. Co‐irradiation produces an antibacterial ratio over 99.1% within a short time because of the synergistic effects of both photodynamic antibacterial and photothermal antibacterial treatments. The hyperthermia produced by 808 nm light illumination can weaken the bacterial activity. And these bacteria can be easily killed by membrane destruction, protein denaturation, and disruption of bacterial metabolic pathways due to reactive oxygen species produced under 660 nm light irradiation. This strategy of Zn2+ and GO modification can increase the antibacterial efficacy of SCN and accelerate wound healing at the same time, which makes this SCN‐Zn2+@GO be very promising in bacteria‐infected wound healing therapy.  相似文献   

16.
The use of solar energy to produce the clean hydrogen (H2) energy from water splitting is a promising means of renewable energy conversion. High activation barriers for O2 generation associated with the rate‐limiting steps require utilization of noble metal‐based cocatalysts, which complicates the fabrication procedure and compromises the stability of the catalyst. Here, a homogenous “spot heating” approach is designed via the ultrasonic cavitation effect for evenly embedding highly crystalline carbon quantum dots (CQDs) on 2D C3N4 nanosheets. Based on density functional calculations and electrochemical experiments, the optimal introduction of CQDs into C3N4 not only extends light absorption spectrum, but also reduces effective mass of electrons (e?), facilitating photocarrier transport from excited sites. And, more importantly, the well‐organized CQDs with superior peroxidase mimetic activity can increase catalytic H2 production through the process of (i) 2H2O → H2O2 + H2; (ii) H2O2→2 ? OH; (iii) ?OH + bisphenol A→ Final Products, with H2 production rate (152 µmol g?1 h?1) several times higher than that for pure C3N4. This work demonstrates an ideal platform for efficient H2 production with synergetic organic contaminant degradation, thereby opening possibilities for coupling energy conversion with environmental remediation.  相似文献   

17.
Graphitic carbon nitride (g/C3N4) is of promise as a highly efficient metal‐free photocatalyst, yet engineering the photocatalytic behaviours for efficiently and selectively degrading complicated molecules is still challenging. Herein, the photocatalytic behaviors of g/C3N4 are modified by tuning the energy band, optimizing the charge extraction, and decorating the cocatalyst. The combination shows a synergistic effect for boosting the photocatalytic degradation of a representative antibiotic, lincomycin, both in the degradation rate and the degree of decomposition. In comparison with the intrinsic g/C3N4, the structurally optimized photocatalyst shows a tenfold enhancement in degradation rate. Interestingly, various methods and experiments demonstrate the specific catalytic mechanisms for the multiple systems of g/C3N4‐based photocatalysts. In the degradation, the active species, including ·O2?, ·OH, and h+, have different contributions in the different photocatalysts. The intermediate, H2O2, plays an important role in the photocatalytic process, and the detailed functions and originations are clarified for the first time.  相似文献   

18.
Exploring cheap and efficient cocatalysts for enhancing the performance of photocatalysts is a challenge in the energy conversion field. Herein, 2D ultrathin Ti3C2 nanosheets, a kind of MXenes, are prepared by etching Ti3AlC2 with subsequent ultrasonic exfoliation. A novel 2D/2D heterojunction of ultrathin Ti3C2/Bi2WO6 nanosheets is then successfully prepared by in situ growth of Bi2WO6 ultrathin nanosheets on the surface of these Ti3C2 ultrathin nanosheets. The resultant Ti3C2/Bi2WO6 hybrids exhibit a short charge transport distance and a large interface contact area, assuring excellent bulk‐to‐surface and interfacial charge transfer abilities. Meanwhile, the improved specific surface area and pore structure endow Ti3C2/Bi2WO6 hybrids with an enhanced CO2 adsorption capability. As a result, the 2D/2D heterojunction of ultrathin Ti3C2/Bi2WO6 nanosheets shows significant improvement on the performance of photocatalytic CO2 reduction under simulated solar irradiation. The total yield of CH4 and CH3OH obtained on the optimized Ti3C2/Bi2WO6 hybrid is 4.6 times that obtained on pristine Bi2WO6 ultrathin nanosheets. This work provides a new protocol for constructing 2D/2D photocatalytic systems and demonstrates Ti3C2 as a promising and cheap cocatalyst.  相似文献   

19.
Directional charge transfer among nanolayers of graphitic carbon nitride (g‐C3N4) is still inefficient because of the interlayer electrostatic potential barrier, which tremendously restricts the utilization of charges in conversion of solar energy into fuel. Herein, an apparent potential among nanolayers is introduced to boost interlayer electron transfer by curving planar g‐C3N4 nanosheets into carbon nitride square tubes (C3N4Ts), and Ni2P nanoparticles as electron acceptors are loaded on C3N4Ts (Ni2P/C3N4Ts) for highly efficient H2 evolution. Study results present H2‐evolution efficiency over the constructed Ni2P/C3N4Ts up to 19.25 mmol g?1 h?1 with a large number of visible H2 bubbles, which is more than 1.9 and 2.6 times of that over g‐C3N4 supported 1 wt%Pt and 3 wt%Pd, respectively. Density functional theory (DFT) and characterizations reveal efficient directional transfer through C3N4T interlayer (001) to Ni2P (111) is achieved under the apparent potential difference of C3N4Ts, which therefore ensures the high H2‐evolution performance of Ni2P/C3N4Ts. These results in the field of material engineering supply a novel strategy to boost directional charge transfer for solar energy conversion efficiency by introducing apparent potential difference.  相似文献   

20.
Extending the portfolio of novel stimuli‐responsive, high‐refractive‐index (RI) materials besides titania is key to improve the optical quality and sensing performance of existing photonic devices. Herein, lithium tin sulfide (LTS) nanosheets are introduced as a novel solution processable ultrahigh RI material (n = 2.50), which can be casted into homogeneous thin films using wet‐chemical deposition methods. Owing to its 2D morphology, thin films of LTS nanosheets are able to swell in response to changes of relative humidity. Integration of LTS nanosheets into Bragg stacks (BSs) based on TiO2, SiO2, nanoparticles or H3Sb3P2O14 nanosheets affords multilayer systems with high optical quality at an extremely low device thickness of below 1 µm. Owing to the ultrahigh RI of LTS nanosheets and the high transparency of the thin films, BSs based on porous titania as the low‐RI material are realized for the first time, showing potential application in light‐managing devices. Moreover, the highest RI contrast ever realized in BSs based on SiO2 and LTS nanosheets is reported. Finally, exceptional swelling capability of an all‐nanosheet BS based on LTS and H3Sb3P2O14 nanosheets is demonstrated, which bodes well for a new generation of humidity sensors with extremely high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号