首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colored cotton fabrics with satisfactory color fastness as well as durable antibacterial and self‐healing superhydrophobic properties are fabricated via a convenient solution‐dipping method that involves the sequential deposition of branched poly(ethylenimine) (PEI), silver nanoparticles (AgNPs), and fluorinated decyl polyhedral oligomeric silsesquioxane (F‐POSS) on cotton fabrics. The deposited AgNPs with tunable surface plasmon resonance endow the cotton fabrics with abundant color and and antibacterial ability. However, in general, water‐soluble AgNPs cannot be firmly deposited onto cotton fabrics to endure the laundering process. The integration of self‐healing superhydrophobicity into the cotton fabrics by depositing F‐POSS/AgNP/PEI films significantly enhances the color fastness of the AgNPs against laundry and mechanical abrasion, while retaining the antibacterial property of the AgNPs. The F‐POSS/AgNP/PEI‐coated cotton fabric accommodates an abundance of F‐POSS, which autonomically migrates to the cotton surface to repetitively restore its damaged superhydrophobicity. The self‐healing superhydrophobicity of the F‐POSS/AgNPs/PEI‐coated cotton fabric guarantees long‐term protection of the underlying AgNPs against laundry and abrasion and allows the cotton fabric to be cleaned by simple rinsing with water.  相似文献   

2.
Despite advances in the development of silk fibroin (SF)‐based hydrogels, current methods for SF gelation show significant limitations such as lack of reversible crosslinking, use of nonphysiological conditions, and difficulties in controlling gelation time. In the present study, a strategy based on dynamic metal‐ligand coordination chemistry is developed to assemble SF‐based hydrogel under physiological conditions between SF microfibers (mSF) and a polysaccharide binder. The presented SF‐based hydrogel exhibits shear‐thinning and autonomous self‐healing properties, thereby enabling the filling of irregularly shaped tissue defects without gel fragmentation. A biomineralization approach is used to generate calcium phosphate‐coated mSF, which is chelated by bisphosphonate ligands of the binder to form reversible crosslinkages. Robust dually crosslinked (DC) hydrogel is obtained through photopolymerization of acrylamide groups of the binder. DC SF‐based hydrogel supports stem cell proliferation in vitro and accelerates bone regeneration in cranial critical size defects without any additional morphogenes delivered. The developed self‐healing and photopolymerizable SF‐based hydrogel possesses significant potential for bone regeneration application with the advantages of injectability and fit‐to‐shape molding.  相似文献   

3.
Skin wound therapy aims not only to restore skin protection but also to recover excitation functions through nerve regeneration. During the restoration of skin nerves, the recruitment of endogenous stem cells and promotion of neuronal regeneration on site work stepwise are foundations of in situ regeneration. However, current therapeutic systems usually execute each process separately, leading to limited regeneration and recovery of excitation functions. Herein, a novel self‐adaptive all‐in‐one delivery chip (G:P:Al‐Chip) is constructed that combines therapeutic protein release, gene delivery, and electrical conduction in a single microfluidic chip by 3D coaxial printing. G:P:Al‐Chip consists of an outer conductive hydrogel shell anchored with chemokine and an inner microchannel filled with enzyme‐initiated vector/plasmid DNAs microcomplexes. G:P:Al‐Chip delivers chemokine, functional plasmid DNAs, and promotes electrical conduction with a self‐adaptive program that significantly enhances the recruitment of endogenous mesenchymal stem cells and promotes neuronal regeneration. G:P:Al‐Chip is shown to enhance nerve regeneration with excitation functions within 23 days. G:P:Al‐Chip organizes recruitment and neuronal regeneration cues along with bioelectrical signal in one degradable chip for accelerated skin nerve regeneration.  相似文献   

4.
Surface coating is a powerful approach to fabricate multifunctional materials that are essential for numerous applications. However, to achieve such multifunctional coating with a facile single‐step procedure, especially on flexible substrates, is still a big challenge, as current fabrication protocols usually require sophisticated equipment and complicated procedures. Here, a novel coating technology involving in situ self‐assembly of the polyoxotitanate (POT) cage [Ti18Mn4O30(OEt)20Phen3] is reported to fabricate multifunctional cotton fabrics in a single step. The in situ generated spherical microparticles of 0.8 µm average diameter are firmly mounted on the underlying cotton substrate, imparting the coated surface with robust hydrophobicity (water contact angle of 148.1 ± 5.4°), antibacterial activity (against Escherichia coli, Staphylococcus epidermidis, and Staphylococcus aureus), and excellent UV‐blocking performance (89% blocked at 350 nm). This coating technology is efficient, straightforward, requires no specialized equipment, and most importantly, is readily extendable to other flexible substrates. Combined with the rapidly developing area of POT cages and similar molecular materials, the reported technology based on in situ self‐assembly holds great promise for further advancing the fabrication of multifunctional flexible devices via a single‐step coating operation.  相似文献   

5.
Smart wearable electronics that are fabricated on light‐weight fabrics or flexible substrates are considered to be of next‐generation and portable electronic device systems. Ideal wearable and portable applications not only require the device to be integrated into various fiber form factors, but also desire self‐powered system in such a way that the devices can be continuously supplied with power as well as simultaneously save the acquired energy for their portability and sustainability. Nevertheless, most of all self‐powered wearable electronics requiring both the generation of the electricity and storing of the harvested energy, which have been developed so far, have employed externally connected individual energy generation and storage fiber devices using external circuits. In this work, for the first time, a hybrid smart fiber that exhibits a spontaneous energy generation and storage process within a single fiber device that does not need any external electric circuit/connection is introduced. This is achieved through the employment of asymmetry coaxial structure in an electrolyte system of the supercapacitor that creates potential difference upon the creation of the triboelectric charges. This development in the self‐charging technology provides great opportunities to establish a new device platform in fiber/textile‐based electronics.  相似文献   

6.
Mimicking the intelligence of biological organisms in artificial systems to design smart actuators that act autonomously in response to constant environmental stimuli is crucial to the construction of intelligent biomimetic robots and devices, but remains a great challenge. Here, a light‐driven autonomous carbon‐nanotube‐based bimorph actuator is developed through an elaborate structural design. This curled droplet‐shaped actuator can be simply driven by constant white light irradiation, self‐propelled by a light‐mechanical negative feedback loop created by light‐driven actuation, time delay in the photothermal response along the actuator, and good elasticity from the curled structure, performing a continuously self‐oscillating motion in a wavelike fashion, which mimics the human sit‐up motion. Moreover, this autonomous self‐oscillating motion can be further tuned by controlling the intensity and direction of the incident light. The autonomous actuator with continuous wavelike oscillating motion shows immense potential in light‐driven biomimetic soft robots and optical‐energy‐harvesting devices. Furthermore, a self‐locomotive artificial snake with phototaxis is constructed, which autonomously and continuously crawls toward the light source in a wave‐propagating manner under constant light irradiation. This snake can be placed on a substrate made of triboelectric materials to realize continuous electric output when exposed to constant light illumination.  相似文献   

7.
Large‐area periodic defect patterns are produced in smectic A liquid crystals confined between rigid plate electrodes that impose conflicting parallel and normal anchoring conditions, inducing the formation of topological defects. Highly oriented stripe patterns are created in samples thinner than 2 μm due to self‐assembly of linear defect domains with period smaller than 4 μm, whereas hexagonal lattices of focal conic domains appear for thicker samples. The pattern type (1d/2d) and period can be controlled at the nematic–smectic phase transition by applying an electric field, which confines the defect domains to a thin surface layer with thickness comparable to the nematic coherence length. The pattern morphology persists in the smectic phase even after varying the field or switching it off. Bistable, non‐equilibrium patterns are stabilized by topological constraints of the smectic phase that hinder the rearrangement of defects in response to field variations.  相似文献   

8.
Raindrop falling, which is one kind of water motions, contains large amount of mechanical energy. However, harvesting energy from the falling raindrop to drive electronics continuously is not commonly investigated. Therefore, a self‐cleaning/charging power system (SPS) is reported, which can be exploited to convert and store energy from falling raindrop directly for providing a stable and durable output. The SPS consists of a hydraulic triboelectric nanogenerator (H‐TENG) and several embedded fiber supercapacitors. The surface of H‐TENG is amphiphobic, enabling the SPS self‐cleaning. The fiber supercapacitor which uses α‐Fe2O3/reduced graphene oxide composite possesses remarkable specific capacitance, excellent electrical stability, and high flexibility. These properties of the fiber supercapacitor make it suitable for a wearable power system. A power raincoat based on the SPS is demonstrated as application. After showering by water flow, which simulates falling raindrops, for 100 s, the power raincoat achieves an open‐circuit voltage of 4 V and lights a light‐emitting diode for more than 300 s. With features of low cost, easy installation, and good flexibility, the SPS harvesting energy from the falling raindrop renders as a promising sustainable power source for wearable and portable electronics.  相似文献   

9.
The cell membrane is the most important protective barrier in living cells and cell membrane targeted therapy may be a high‐performance therapeutic modality for tumor treatment. Here, a novel charge reversible self‐delivery chimeric peptide C16–PRP–DMA is developed for long‐term cell membrane targeted photodynamic therapy (PDT). The self‐assembled C16–PRP–DMA nanoparticles can effectively target to tumor by enhanced permeability and retention effect without additional carriers. After undergoing charge reverse in acidic tumor microenvironment, C16–PRP–DMA inserts into the tumor cell membrane with a long retention time of more than 14 h, which is very helpful for in vivo applications. It is found that under light irradiation, the reactive oxygen species generated by the inserted C16–PRP–DMA would directly disrupt cell membrane and rapidly induce cell necrosis, which remarkably increases the PDT effect in vitro and in vivo. This novel self‐delivery chimeric peptide with a long‐term cell membrane targeting property provides a new prospect for effective PDT of cancer.  相似文献   

10.
Self‐standing electrodes are the key to realize flexible Li‐ion batteries. However, fabrication of self‐standing cathodes is still a major challenge. In this work, porous LiCoO2 nanosheet arrays are grown on Au‐coated stainless steel (Au/SS) substrates via a facile “hydrothermal lithiation” method using Co3O4 nanosheet arrays as the template followed by quick annealing in air. The binder‐free and self‐standing LiCoO2 nanosheet arrays represent the 3D cathode and exhibit superior rate capability and cycling stability. In specific, the LiCoO2 nanosheet array electrode can deliver a high reversible capacity of 104.6 mA h g?1 at 10 C rate and achieve a capacity retention of 81.8% at 0.1 C rate after 1000 cycles. By coupling with Li4Ti5O12 nanosheet arrays as anode, an all‐nanosheet array based LiCoO2//Li4Ti5O12 flexible Li‐ion battery is constructed. Benefiting from the 3D nanoarchitectures for both cathode and anode, the flexible LiCoO2//Li4Ti5O12 battery can deliver large specific reversible capacities of 130.7 mA h g?1 at 0.1 C rate and 85.3 mA h g?1 at 10 C rate (based on the weight of cathode material). The full cell device also exhibits good cycling stability with 80.5% capacity retention after 1000 cycles at 0.1 C rate, making it promising for the application in flexible Li‐ion batteries.  相似文献   

11.
Poor tumor selectivity and short life span of reactive oxygen species (ROS) are two major challenges in photodynamic therapy (PDT). In this study, a self‐transformable pH‐driven membrane anchoring photosensitizer (pHMAPS) is used to realize tumor‐specific accumulation and in situ PDT on tumor cell membrane to maximize the therapeutic potency. It is found that pHMAPS was able to form α‐helix structure under acidic condition (pH 6.5 or 5.5), while remain random coil at normal pH of 7.4. This pH‐driven secondary structure switch enables the successful insertion of pHMAPS into membrane lipid bilayer, especially for cancerous cell membrane in the acidic tumor microenvironment. Under laser irradiation, cytotoxic ROS is generated in the immediate vicinity of cell membrane, resulting in superior cell killing effect in vitro and significant inhibition of tumor growth in vivo. Importantly, benefited from this membrane‐specific PDT, tumor growth‐induced hepatic, pulmonary, as well as osseous metastases of breast cancer cells are also retarded after PDT treatment. Thus, the membrane localized PDT by pHMAPS provides a simple but effective strategy to enhance the medical performance of photosensitizing agents in cancer therapy.  相似文献   

12.
Protein therapy offers promising prospects for the treatment of various important diseases, thus it is highly desirable to develop a robust carrier that can deliver active proteins into cells. The development of a novel protein delivery platform based on the self‐assembly of multiarmed amphiphilic cyclodextrins (CDEH) is reported. CDEH can self‐assemble into nanoparticles in aqueous solution and achieve superior encapsulation of protein (loading capacity > 30% w/w) simply by mixing with protein solution without introducing any subsequent cumbersome steps that may inactivate proteins. More importantly, CDEH nanovehicles can be easily further modified with various targeting groups based on host–guest complexation. Using saporin as a therapeutic protein, AS1411‐aptamer‐modified CDEH nanovehicles can preferentially accumulate in tumors and efficiently inhibit tumor growth in a MDA‐MB‐231 xenograft mouse model. Moreover, folate‐targeted CDEH nanovehicles can also deliver Cas9 protein and Plk1‐targeting sgRNA into Hela cells, leading to 47.1% gene deletion and 64.1% Plk1 protein reduction in HeLa tumor tissue, thereby effectively suppressing the tumor progression. All these results indicate the potential of targeted CDEH nanovehicles in intracellular protein delivery for improving protein therapeutics.  相似文献   

13.
A sequentially responsive photosensitizer‐integrated biopolymer is developed for tumor‐specific photodynamic therapy, which is capable of forming long‐retained aggregates in situ inside tumor tissues. Specifically, the photosensitizer zinc phthalocyanine (ZnPc) is conjugated with polyethylene glycol (PEG) via pH‐labile maleic acid amide linker and then immobilized onto the hyaluronic acid (HA) chain using a redox‐cleavable disulfide linker. The PEG segment can enhance blood circulation of the molecular carrier after intravenous administration and be shed after reaching the acidic tumor microenvironment, allowing the remaining fragment to self‐assemble into large clusters in situ to avoid backward diffusion and improve tumor retention. This process is driven by hydrophobic interactions and does not require additional external actuation. The aggregates are then internalized by the tumor cells via HA‐facilitated endocytosis, and the high glutathione level in tumor cells eventually leads to the intracellular release of ZnPc to facilitate its interaction with the subcellular lipid structures. This tumor‐triggered morphology‐based delivery platform is constructed with clinically tested components and could potentially be applied to other hydrophobic therapeutics.  相似文献   

14.
Multifunctional electronic textiles (e‐textiles) incorporating miniaturized electronic devices will pave the way toward a new generation of wearable devices and human–machine interfaces. Unfortunately, the development of e‐textiles is subject to critical challenges, such as battery dependence, breathability, satisfactory washability, and compatibility with mass production techniques. This work describes a simple and cost‐effective method to transform conventional garments and textiles into waterproof, breathable, and antibacterial e‐textiles for self‐powered human–machine interfacing. Combining embroidery with the spray‐based deposition of fluoroalkylated organosilanes and highly networked nanoflakes, omniphobic triboelectric nanogenerators (RF‐TENGs) can be incorporated into any fiber‐based textile to power wearable devices using energy harvested from human motion. RF‐TENGs are thin, flexible, breathable (air permeability 90.5 mm s?1), inexpensive to fabricate (<0.04$ cm?2), and capable of producing a high power density (600 µW cm?2). E‐textiles based on RF‐TENGs repel water, stains, and bacterial growth, and show excellent stability under mechanical deformations and remarkable washing durability under standard machine‐washing tests. Moreover, e‐textiles based on RF‐TENGs are compatible with large‐scale production processes and exhibit high sensitivity to touch, enabling the cost‐effective manufacturing of wearable human–machine interfaces.  相似文献   

15.
Self‐assembly in the presence of external forces is an adaptive, directed organization of molecular components under nonequilibrium conditions. While forces may be generated as a result of spontaneous interactions among components of a system, intervention with external forces can significantly alter the final outcome of self‐assembly. Superimposing these intrinsic and extrinsic forces provides greater degrees of freedom to control the structure and function of self‐assembling materials. In this work we investigate the role of electric fields during the dynamic self‐assembly of a negatively charged polyelectrolyte and a positively charged peptide amphiphile in water leading to the formation of an ordered membrane. In the absence of electric fields, contact between the two solutions of oppositely charged molecules triggers the growth of closed membranes with vertically oriented fibrils that encapsulate the polyelectrolyte solution. This process of self‐assembly is intrinsically driven by excess osmotic pressure of counterions and the electric field is found to modify the kinetics of membrane formation as well as membrane morphology and properties. Depending on the strength and orientation of the field we observe a significant increase or decrease of up to nearly 100% in membrane thickness, or the controlled rotation of nanofiber growth direction by 90 degrees which leads to a significant increase in mechanical stiffness. These results suggest the possibility of using electric fields to control structure in self‐assembly processes that involve the diffusion of oppositely charged molecules.  相似文献   

16.
Polo‐like kinase 1 (PLK1) and polo‐like kinase 4 (PLK4) are closely associated with the progression of several cancers, and their bispecific inhibitors can kill tumor cells effectively. Herein, a redox‐responsive bispecific supramolecular nanomedicine based on the self‐assembly of a cyclic peptide, termed as C‐1, targeting both PLK1 and PLK4 as a potent anticancer agent is reported. C‐1 is a cyclic peptide in response to reducing agents such as glutathione (GSH), which is constructed by a combined approach of pharmacophore modeling, molecular docking, and reversible cyclization. After entering the cytosol of cancer cell, the disulfide linkage is reduced by intracellular GSH, with the resulting linear conformation self‐assembling into bispecific nanofibers. C‐1 can lead to apoptotic cell death by inducing caspase‐3 activation and PARP cleavage in HeLa cells. Moreover, it suppresses the growth of HeLa cells in cell assays, and inhibits the progression of HeLa cells‐induced xenografts in nude mice without inducing notable side effects. This work provides a successful example of developing the redox‐responsive bispecific nanomedicine for high‐efficacy and low‐toxic cancer therapy.  相似文献   

17.
Gaining spatially resolved control over the mechanical properties of materials in a remote, programmable, and fast‐responding way is a great challenge toward the design of adaptive structural and functional materials. Reversible, temperature‐sensitive systems, such as polymers equipped with supramolecular units, are a good model system to gain detailed information and target large‐scale property changes by exploiting reversible crosslinking scenarios. Here, it is demonstrated that coassembled elastomers based on polyglycidols functionalized with complementary cyanuric acid and diaminotriazine hydrogen bonding couples can be remotely modulated in their mechanical properties by spatially confined laser irradiation after hybridization with small amounts of thermally reduced graphene oxide (TRGO). The TRGO provides an excellent photothermal effect, leads to light‐adaptive steady‐state temperatures, and allows local breakage/de‐crosslinking of the hydrogen bonds. This enables fast self‐healing and spatiotemporal modulation of mechanical properties, as demonstrated by digital image correlation. This study opens pathways toward light‐fueled and light‐adaptive graphene‐based nanocomposites employing molecularly controlled thermal switches.  相似文献   

18.
Three‐dimensional integration technology results in area savings, platform power savings, and an increase in performance. Through‐silicon via (TSV) assembly and manufacturing processes can potentially introduce defects. This may result in increases in manufacturing and test costs and will cause a yield problem. To improve the yield, spare TSVs can be included to repair defective TSVs. This paper proposes a new built‐in self‐test feature to identify defective TSV channels. For defective TSVs, this paper also introduces dynamic self‐repair architectures using code‐based and hardware‐mapping based repair.  相似文献   

19.
20.
Dual‐ion batteries (DIBs) have attracted much attention due to their advantages of low cost and especially environmental friendliness. However, the capacities of most DIBs are still unsatisfied (≈100 mAh g?1) ascribed to the limited capacity of anions intercalation for conventional graphite cathode. In this study, 3D porous microcrystalline carbon (3D‐PMC) was designed and synthesized via a self‐templated growth approach, and when used as cathode for a DIB, it allows both intercalation and adsorption of anions. The microcrystalline carbon is beneficial to obtain capacity originated from anions intercalation, and the 3D porous structure with a certain surface area contributes to anions adsorption capacity. With the synergistic effect, this 3D‐PMC is utilized as cathode and tin as anode for a sodium‐based DIB, which has a high capacity of 168.0 mAh g?1 at 0.3 A g?1, among the best values of reported DIBs so far. This cell also exhibits long‐term cycling stability with a capacity retention of ≈70% after 2000 cycles at a high current rate of 1 A g?1. It is believed that this work will provide a strategy to develop high‐performance cathode materials for DIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号