首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone metastasis occurs in 70% of breast cancer patients and is a frequent cause of morbidity in cancer patients. A delicate balance exists in the bone microenvironment, but the functional dynamics underlying the tumor cell‐microenvironment interactions remain poorly understood. 3D in vitro model systems of metastasis can throw new light on this phenomenon. Silk protein fibroin scaffolds, are cytocompatible for 3D cancer cell culture. They are structurally more resistant to protease degradation than other native biomaterials making these matrices suitable for cancer modeling. In this report, human breast adenocarcinoma cells, human osteoblast like cells and mesenchymal stem cells are co‐cultered. Cancer cells and osteoblast‐like cells are found to interact through secreted products. Decreased population of osteoblast‐like cells and mineralization of extracellular matrix are observed as a result of co‐culture. Significantly increased migration of breast cancer cells is observed in the bone‐like constructs than in non‐seeded scaffolds. The co‐culture constructs show significant increase in drug resistance, invasiveness and angiogenicity. Co‐culture of breast cancer cells with osteoblast like cells and mesenchymal stem cells also indicate that the interaction of cancer cells with bone microenvironment varies with spatial organization, presence of osteogenic factors as well as stromal cell type. Here, results show that 3D in vitro co‐culture models is possibly a better system to study and target cancer progression.  相似文献   

2.
The recent progresses in tissue engineering and nanomaterial‐based therapeutics/theranostics have led to the ever increasing utilization of 3D in vitro experimental models as the bona fide culture systems to evaluate the therapeutic/theranostic effects of nanomedicine. Compared to the use of conventional 2D culture platforms, 3D biomimetic cultures offer unmatched advantages as relevant physiological and pathological elements can be incorporated to allow better characterization of the engineered bio‐nanomaterials in the targeted tissue‐specific microenvironment. In this Feature Article, the current state‐of‐the‐art 3D in vitro models that have been developed for the evaluation of biosafety and efficacy of nano‐ therapeutics/theranostics targeting the colon, blood–brain barrier (BBB), lungs, skin tumor models to bridge the nanomedicine bench to pre‐clinical ravine are reviewed. Furthermore, the critical physicochemical parameters of the bio‐nanomaterials that govern its transport and biodistribution in a complex 3D microenvironment will be highlighted. The major challenges and future prospects of evaluating nanomedicine in the third dimension will also be discussed.  相似文献   

3.
The limitations of clinical chemotherapy are credited primarily to drug resistance. Effective development and screening of new drugs require appropriate in vitro tumor models that resemble the in vivo situation to evaluate drug efficiency and to decrease the use of experimental animals. 3D in vitro model systems that are able to mimic in vivo microenvironments are now highly sought after in cancer research. Here, the characteristics of breast cancer cell line MDA‐MB‐231 cells on 3D, and 2D Antheraea mylitta silk matrices and tissue culture plates are compared. After long term culture of breast cancer cells in the silk scaffold, the engineered tumor construct shows different zones of cell proliferation, such as an avascular tumor. Silk fibroin matrix 3D tumor models are studied for the evaluation of various anticancer drugs. The cytotoxic effects of three different drugs (Paclitaxel, Celecoxib, and ZD6474) at different concentrations are evaluated for MDA‐MB‐231 grown on 2D films as well as on a 3D fibroin scaffold. Higher drug concentrations are required to achieve a comparable reduction in cell viability and invasive potential in 3D culture. Combinatorial treatment of drugs at IC50 concentrations result in up to 84% death of cancer cells. The results indicate that 3D in vitro tumor models may be better systems to evaluate cancer treatment strategies.  相似文献   

4.
Malignant bone tumors are one of the major serious diseases in clinic. Inferior reconstruction of new bone and rapid propagation of residual tumor cells are the main challenges to surgical intervention. Herein, a bifunctional DTC@BG scaffold for near‐infrared (NIR)‐activated photonic thermal ablation of osteosarcoma and accelerated bone defect regeneration is engineered by in situ growth of NIR‐absorbing cocrystal (DTC) on the surface of a 3D‐printing bioactive glass (BG) scaffold. The prominent photothermal conversion performance and outstanding bone regeneration capability of DTC@BG scaffolds originate from the precise tailoring of the bandgap between the electron donors and acceptors of DTC and promote new bone growth performance of BG scaffolds. DTC@BG scaffolds not only significantly promote tumor cell ablation in vitro, but also effectively facilitate bone tumor suppression in vivo. In particular, DTC@BG scaffolds exhibit excellent capability in stimulating osteogenic differentiation and angiogenesis, and finally promote newborn bone formation in the bone defects. This research represents the first paradigm for ablating osteosarcoma and facilitating new bone formation through precise modulation of electron donors and acceptors in the cocrystal, which offers a new avenue to construct high‐efficiency therapeutic platforms based on cocrystal strategy for ablation of malignant bone tumor.  相似文献   

5.
Current in vitro antitumor drug screening strategies insufficiently mimic biological systems. They tend to lack true perfusion and draining microcirculation systems, which may post significant limitations in explicitly reproducing the transport kinetics of cancer therapeutics. Herein, the fabrication of an improved tumor model consisting of a bioprinted hollow blood vessel and a lymphatic vessel pair, hosted in a 3D tumor microenvironment‐mimetic hydrogel matrix is reported, termed as the tumor‐on‐a‐chip with a bioprinted blood and a lymphatic vessel pair (TOC‐BBL). The bioprinted blood vessel is a perfusable channel with an opening on both ends, while the bioprinted lymphatic vessel is blinded on one end, both of which are embedded in a hydrogel tumor mass, with vessel permeability individually tunable through optimization of the compositions of the bioinks. It is demonstrated that systems with different combinations of these bioprinted blood/lymphatic vessels exhibit varying levels of diffusion profiles for biomolecules and anticancer drugs. The results suggest that this unique in vitro tumor model containing the bioprinted blood/lymphatic vessel pair may have the capacity of simulating the complex transport mechanisms of certain pharmaceutical compounds inside the tumor microenvironment, potentially providing improved accuracy in future cancer drug screening.  相似文献   

6.
Neural regeneration devices interface with the nervous system and can provide flexibility in material choice, implantation without the need for additional surgeries, and the ability to serve as guides augmented with physical, biological (e.g., cellular), and biochemical functionalities. Given the complexity and challenges associated with neural regeneration, a 3D printing approach to the design and manufacturing of neural devices can provide next‐generation opportunities for advanced neural regeneration via the production of anatomically accurate geometries, spatial distributions of cellular components, and incorporation of therapeutic biomolecules. A 3D printing‐based approach offers compatibility with 3D scanning, computer modeling, choice of input material, and increasing control over hierarchical integration. Therefore, a 3D printed implantable platform can ultimately be used to prepare novel biomimetic scaffolds and model complex tissue architectures for clinical implants in order to treat neurological diseases and injuries. Further, the flexibility and specificity offered by 3D printed in vitro platforms have the potential to be a significant foundational breakthrough with broad research implications in cell signaling and drug screening for personalized healthcare. This progress report examines recent advances in 3D printing strategies for neural regeneration as well as insight into how these approaches can be improved in future studies.  相似文献   

7.
Micrometer‐sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multicell coculture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user‐defined control of the microenvironments, from the order of singly encapsulated cells to entire 3D cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.  相似文献   

8.
Constructing proper in vitro tumor immune microenvironment (TIME) is important for cancer immune-therapy studies, while the selection of biomaterials is critical. As innate immune cells, macrophages can target and kill cancer cells in vivo at the early stage of tumor development. However, this targeting phenomenon has not been observed in vitro. Herein, a quasi-3D in vitro cell culture model is constructed to mimic TIME by integrating hydrogel collagen as extracellular matrix for cells. In the collagen-based quasi-3D in vitro system, for the first time, it is found that macrophages can be attracted toward cancer cells along the dynamically reconstructed collagen fibers. By combining traction force microscopy and customized micro-manipulator system, it is revealed that the collagen matrix-transmitted tensile force signaling precisely guides the migration of macrophages toward cancer cells. The mechano-responsiveness mechanism is related to the activation of mechanosensitive ion channels, and the induced local increase of calcium signal, which is proved to enhance the F-actin assembly and to guide the cell migration. This novel mechanism advances the understanding of the role of collagen fibers in mechanotaxis of macrophages. Taken together, it has great potential for assisting biomaterial designs in developing new drug-screening models and clinical strategies for cancer immune-therapy.  相似文献   

9.
Cancer metastasis accounts for the high mortality of cancer‐related deaths and the therapy is greatly challenged by the limited drug delivery efficiency. Inspired by the essential role of culprit cancer cells and versatile accessory cells during cancer metastasis, diverse cell‐based nanosystems (CBNs) are emerging as attractive and encouraging drug delivery platforms to target cancer metastasis. Herein, the authors focus on the emerging strategies of versatile CBNs that synergistically combine the merit of source cells and nanoparticles for antimetastasis therapy. CBNs are usually comprised of natural nanosized vesicles, cell membrane camouflaged nanoparticles, and bioengineered living cell vehicles. The authors discuss the rationality and advances of various CBNs in targeting different stages of cancer metastasis, including primary tumor, circulating tumor cells (CTCs), and distant metastasis as well as the tumor immune microenvironments (TIM). On this basis, this review provides some feasible perspectives on designing CBNs to enhance the drug delivery efficiency for treating cancer metastasis.  相似文献   

10.
Drug screening with simplified 2D cell culture and relevant animal testing fail to predict clinical outcomes. With the rising cost of drug development, predictive 3D tissue models with human cells are in urgent demand. Establishing vascular perfusion of 3D tissues has always been a challenge, but it is necessary to mimic drug transport and to capture complex interorgan crosstalk. Here, a versatile multiwell plate is presented empowered by built‐in microfabricated vascular scaffolds that define the vascular space and support self‐assembly of various parenchymal tissues. In this configuration, assembly and organ‐specific function of a metabolically active liver, a free‐contracting cardiac muscle, and a metastatic solid tumor are demonstrated, tracking organ function using noninvasive analysis techniques. By linking the 3D tumor and the liver tissue in series, it is demonstrated that the presence of liver tissue is crucial to correctly reveal the efficacy of a chemotherapeutic drug, Tegafur. Furthermore, the complete cancer metastasis cascade is demonstrated across multiple organs, where cancer cells escaping from the solid tumor can invade a distant liver tissue connected through a continuous vascular interface. This combinatory use of microfabricated scaffold onto a standard cell culturing platform can offer important insights into the mechanics of complex interorgan biological events.  相似文献   

11.
Successful engineering of functional tissues requires the development of three‐dimensional (3D) scaffolds that can provide an optimum microenvironment for tissue growth and regeneration. A new class of 3D scaffolds with a high degree of organization and unique topography is fabricated from polyacrylamide hydrogel. The hydrogel matrix is molded by inverted colloidal crystals made from 104 μm poly(methyl methacrylate) spheres. The topography of the scaffold can be described as hexagonally packed 97 μm spherical cavities interconnected by a network of channels. The scale of the long‐range ordering of the cavities exceeds several millimeters. In contrast to analogous material in the bulk, hydrogel shaped as an inverted opal exhibits much higher swelling ratios; its swelling kinetics is an order of magnitude faster as well. The engineered scaffold possesses desirable mechanical and optical properties that can facilitate tissue regeneration while allowing for continuous high‐resolution optical monitoring of cell proliferation and cell–cell interaction within the scaffold. The scaffold biocompatibility as well as cellular growth and infiltration within the scaffold were observed for two distinct human cell lines which were seeded on the scaffold and were tracked microscopically up to a depth of 250 μm within the scaffold for a duration of up to five weeks. Ease of production, a unique 3D structure, biocompatibility, and optical transparency make this new type of hydrogel scaffold suitable for most challenging tasks in tissue engineering.  相似文献   

12.
Designing biomimetic scaffolds with in vivo–like microenvironments using biomaterials is an essential component of successful tissue engineering approaches. The intestinal smooth muscle layers exhibit a complex tubular structure consisting of two concentric muscle layers in which the inner circular layer is orthogonally oriented to the outer longitudinal layer. Here, a 3D bi‐layered tubular scaffold is presented based on flexible, mechanically robust, and well aligned silk protein microfibers to mimic the native human intestinal smooth muscle structure. The scaffolds are seeded with primary human intestinal smooth muscle cells to replicate intestinal muscle tissues in vitro. Characterization of the tissue constructs reveals good biocompatibility and support for cell alignment and elongation in the different scaffold layers to enhance cell differentiation and functions. Furthermore, the engineered smooth muscle constructs support oriented neurite outgrowth, a requisite step to achieve functional innervation. These results suggest these microfiber scaffolds as functional templates for in vitro regeneration of human intestinal smooth muscle systems. The scaffolding provides a crucial step toward engineering functional human intestinal tissue in vitro, as well as engineering other types of smooth muscles in terms of their similar phenotypes. Such utility may lead to a better understanding of smooth muscle associated diseases and treatments.  相似文献   

13.
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer‐specific or cancer‐associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane‐coated nanoparticles, tumor cell‐derived extracellular vesicles, circulating tumor cells, cell‐free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology‐based imaging probes in the future.  相似文献   

14.
Prolonged circulation, specific and effective uptake by tumor cells, and rapid intracellular drug release are three main factors for the drug delivery systems to win the battle against metastatic breast cancer. In this work, a tumor microenvironment‐adaptive nanoparticle co‐loading paclitaxel (PTX) and the anti‐metastasis siRNA targeting Twist is prepared. The nanoparticle consists of a pH‐sensitive core, a cationic shell, and a matrix metalloproteinase (MMP)‐cleavable polyethylene glycol (PEG) corona conjugated via a peptide linker. PEG will be cut away by MMPs at the tumor site, which endows the nanoparticle with smaller particle size and higher positive charge, leading to more efficient cellular uptake in tumor cells and higher intra‐tumor accumulation of both PTX and siRNA in the 4T1 tumor‐bearing mice models compared to the nanoparticles with irremovable PEG. In addition, acid‐triggered drug release in endo/lysosomes is achieved through the pH‐sensitive core. As a result, the MMP/pH dual‐sensitive nanoparticles significantly inhibit tumor growth and pulmonary metastasis. Therefore, this tumor‐microenvironment‐adaptive nanoparticle can be a promising codelivery vector for effective therapy of metastatic breast cancer due to simultaneously satisfying the requirements of long circulating time, efficient tumor cell targeting, and fast intracellular drug release.  相似文献   

15.
Nanomaterials hold promise for the treatment of human carcinomas but integrating multiple functions into a single drug carrier system remains challenging. Herein, an integrated therapeutic delivery system for human hepatocellular carcinoma (HCC) treatment is reported, which is based on rhodamine B (RhB) end‐labeled cationic poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) and hydrophobic poly(3‐azido‐2‐hydroxypropyl methacrylate) (PGMA‐N3) segments equipped with a covalently bound galactose. This biocompatible and safe platform RhB‐PDMAEMA25‐c‐PGMA50‐Gal micelles (Gal‐micelles) offers four advantages: (1) Galactose ligands enhance cellular uptake by targeting the asialoglycoprotein receptor (ASGPR) that is overexpressed on HCC cell lines surfaces; (2) RhB end‐labeling facilitates real‐time imaging for tracking both in vitro and in vivo; (3) the acidic tumor microenvironment protonates the carrier system for efficient drug release as well as gene transfection, (4) codelivery of anticancer drug doxorubicin (DOX) and B‐cell lymphoma 2 small interfering RNA (Bcl‐2 siRNA) works synergistically against tumor growth in both subcutaneous and orthotopic HCC bearing mouse models. This integrated therapeutic delivery system holds potential for future clinical HCC treatment.  相似文献   

16.
Biohybrid microswimmers have recently shown to be able to actively perform in targeted delivery and in vitro biomedical applications. However, more envisioned functionalities of the microswimmers aimed at in vivo treatments are still challenging. A photosynthetic biohybrid nanoswimmers system (PBNs), magnetic engineered bacteria‐Spirulina platensis, is utilized for tumor‐targeted imaging and therapy. The engineered PBNs is fabricated by superparamagnetic magnetite (Fe3O4 NPs) via a dip‐coating process, enabling its tumor targeting ability and magnetic resonance imaging property after intravenous injection. It is found that the PBNs can be used as oxygenerator for in situ O2 generations in hypoxic solid tumors through photosynthesis, modulating the tumor microenvironment (TME), thus improving the effectiveness of radiotherapy (RT). Furthermore, the innate chlorophyll released from the RT‐treated PBNs, as a photosensitizer, can produce cytotoxic reactive oxygen species under laser irradiation to achieve photodynamic therapy. Excellent tumor inhibition can be realized by the combined multimodal therapies. The PBNs also possesses capacities of chlorophyll‐based fluorescence and photoacoustic imaging, which can monitor the tumor therapy and tumor TME environment. These intriguing properties of the PBNs provide a promising microrobotic platform for TME hypoxic modulation and cancer theranostic applications.  相似文献   

17.
Biomaterials are extensively used to restore damaged tissues, in the forms of implants (e.g., tissue engineered scaffolds) or biomedical devices (e.g., pacemakers). Once in contact with the physiological environment, nanostructured biomaterials undergo modifications as a result of endogenous proteins binding to their surface. The formation of this macromolecular coating complex, known as “protein corona,” onto the surface of nanoparticles and its effect on cell–particle interactions are currently under intense investigation. In striking contrast, protein corona constructs within nanostructured porous tissue engineering scaffolds remain poorly characterized. As organismal systems are highly dynamic, it is conceivable that the formation of distinct protein corona on implanted scaffolds might itself modulate cell–extracellular matrix interactions. Here, it is reported that corona complexes formed onto the fibrils of engineered collagen scaffolds display specific, distinct, and reproducible compositions that are a signature of the tissue microenvironment as well as being indicative of the subject's health condition. Protein corona formed on collagen matrices modulated cellular secretome in a context‐specific manner ex vivo, demonstrating their role in regulating scaffold–cellular interactions. Together, these findings underscore the importance of custom‐designing personalized nanostructured biomaterials, according to the biological milieu and disease state. The use of protein corona as in situ biosensor of temporal and local biomarkers is proposed.  相似文献   

18.
Blocking cancer metabolism represents an attractive therapeutic strategy for cancer treatment. However, the lack of selective mitochondria targeting compromises the efficacy and safety of antimetabolic agents. Given that β‐glucuronidase (β‐G) is overexpressed in the tumor extracellular microenvironment and intracellular endosomes and lysosomes, a new concept of “pro‐staramine” is proposed to achieve multistage tumor mitochondrial targeting. The pro‐staramine, namely GluAcNA, is engineered by conjugating a β‐glucuronic acid to staramine via a “seamless” linker. When exposed to β‐G, the β‐glucuronic acid in GluAcNA can be hydrolyzed, followed by a rapid 1,6‐self‐elimination of the “seamless”, thus transforming anionic GluAcNA to cationic staramine. Liposomes containing GluAcNA (GluAcNA‐Lip) show long‐circulating characteristics and undergo a sequentially β‐G‐triggered activation, resulting in a cation‐driven mitochondrial accumulation. The multistage mitochondrial targeting and the promising antitumoral efficacy of GluAcNA‐Lip are validated by employing lonidamine as a model drug.  相似文献   

19.
Biomimetic scaffolds generally aim at structurally and compositionally imitating native tissue, thus providing a supportive microenvironment to the transplanted or recruited cells in the tissue. Native decellularized porcine extracellular matrix (ECM) is becoming the ultimate bioactive material for the regeneration of different organs. Particularly for cardiac regeneration, ECM is studied as a patch and injectable scaffolds, which improve cardiac function, yet lack reproducibility and are difficult to control or fine‐tune for the desired properties, like most natural materials. Seeking to harness the natural advantages of ECM in a reproducible, scalable, and controllable scaffold, for the first time, a matrix that is produced from whole decellularized porcine cardiac ECM using electrospinning technology, is developed. This unique electrospun cardiac ECM mat preserves the composition of ECM, self‐assembles into the same microstructure of cardiac ECM ,and ,above all, preserves key cardiac mechanical properties. It supports cell growth and function, and demonstrates biocompatibility in vitro and in vivo. Importantly, this work reveals the great potential of electrospun ECM‐based platforms for a wide span of biomedical applications, thus offering the possibility to produce complex natural materials as tailor‐made, well‐defined structures.  相似文献   

20.
Various hydrogels, such as poly(γ‐glutamic acid) (γ‐PGA), gelatin (GT), alginic acid (Alg), and agarose (Aga), with 3D interconnected and oriented fibrous pores (OP gels) are prepared for 3D polymeric cellular scaffolds by using silica fiber cloth (SC) as template. After the preparation of these hydrogels with the SC templates, the latter are subsequently removed by washing with hydrofluoric acid solution. Scanning electron microscopy (SEM) clearly shows OP structures in the hydrogels. These various types of OP gels are successfully prepared in this way, independently of the crosslinking mechanism, such as chemical (γ‐PGA or GT), coordinate‐bonded (Alg), or hydrogen‐bonded (Aga) crosslinks. SEM, confocal laser scanning microscopy, and histological evaluations clearly demonstrate that mouse L929 fibroblast cells adhere to and extend along these OP structures on/in γ‐PGA hydrogels during 3D cell culture. The L929 cells that adhere on/in the oriented hydrogel are viable and proliferative. Furthermore, 3D engineered tissues, composed of the oriented cells and extracellular matrices (ECM) produced by the cells, are constructed in vitro by subsequent decomposition of the hydrogel with cysteine after 14 days of cell culture. This novel technology to fabricate 3D‐engineered tissues, consisting of oriented cells and ECM, will be useful for tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号