首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Materials based on the laminar ordering of self-assembled molecules have a unique potential for applications requiring efficient energy migration through densely packed chromophores. Here, employing molecular assemblies of coil–rod–coil block molecules for triplet–triplet annihilation upconversion (TTA-UC) based on triplet energy migration with linearly polarized emission is reported. By covalently attaching discrete-length oligodimethylsiloxane (oDMS) to 9,10-diphenylanthracene (DPA), highly ordered 2D crystalline DPA sheets separated by oDMS layers are obtained. Transparent films of this material doped with small amounts of triplet sensitizer PtII octaethylporphyrin show air-stable TTA-UC under non-coherent excitation. Upon annealing, an increase in TTA-UC up to two orders of magnitude is observed originating from both an improved molecular ordering of DPA and an increased dispersion of the sensitizer. The molecular alignment in millimeter-sized domains leads to upconverted linearly polarized emission without alignment layers. By using a novel technique, upconversion imaging microscopy, the TTA-UC intensity is spatially resolved on a micrometer scale to visually demonstrate the importance of molecular dispersion of sensitizer molecules for efficient TTA-UC. The reported results are promising for anti-counterfeiting and 3D night-vision applications, but also exemplify the potential of discrete oligodimethylsiloxane functionalized chromophores for highly aligned and densely packed molecular materials.  相似文献   

2.
Circularly polarized luminescent materials with high dissymmetry factor (glum) have been attracting increasing attention due to their distinctive photonic properties. In this work, by incorporating upconversion nanoparticles (UCNPs) and CsPbBr3 perovskite nanocrystals (PKNCs) into a chiral nematic liquid crystal (N*LC), enhanced upconverted circularly polarized luminescence (UC-CPL) based on a radiative energy transfer (RET) process from UCNPs to CsPbBr3 PKNCs is successfully implemented. By locating the emission peak of CsPbBr3 PKNCs at the center of the photonic bandgap of N*LC, the maximum glum value of UC-CPL can be amplified to an extremely large value of 1.1. Meanwhile, upconverted emission of UCNPs can be significantly enhanced due to the band edge enhancement effect of the N*LC, subsequently enhancing the emission of the CsPbBr3 PKNCs through the RET process. In addition, an applied electric field can switch the upconverted emission of the UCNPs, as well as the RET process, enabling an electric-field-controlled UC-CPL switch.  相似文献   

3.
Circularly polarized luminescent (CPL) materials are currently attracting great interest. While a chiral building is usually necessary in order to obtain CPL materials, here, this study proposes a general approach for fabricating 1D circularly polarized luminescent nanoassemblies from achiral aromatic molecules or aggregation‐induced emissive compounds (AIEgens). It is found that a C3 symmetric chiral gelator can individually form hexagonal nanotube structures and encapsulate the guest molecules. When achiral AIEgens are encapsulated into the confined nanotubes via organogelation, the AIEgens will emit circularly polarized luminescence. Further, the direction of the CPL could be controlled by the supramolecular chirality of the nanotube. Remarkably, the approach is universal and various kinds of the AIEgens can be doped to show such property, providing a full‐color‐tunable circularly polarized luminescence.  相似文献   

4.
Photon upconversion via triplet–triplet annihilation (TTA) has achieved high efficiencies in solution and within polymer matrices that support molecular migration systems. It has diverse potential applications including bioimaging, optical sensors, and photovoltaics. To date, however, the reported performance of TTA in rigid solid-state systems is substantially inferior, which may complicate the integration of TTA in other solid-state devices. Here, solid-state loss mechanisms in a green-to-blue upconversion system are investigated, and three specific losses are identified: energy back transfer, sensitizer aggregation, and triplet–charge annihilation. Strategies are demonstrated to mitigate energy back transfer and sensitizer aggregation, and a completely dry-processed solid-state TTA upconversion system having an upconversion efficiency of ≈2.5% (by the convention of maximum efficiency being 100%) at a relatively low excitation intensity of 238 mW cm−2 is reported. This device is the first demonstration of dry-processed solid-state TTA comparable to solution-processed solid-state systems. The strategies reported here can be generalized to other upconversion systems and offer a route to achieving higher-performance solid-state TTA upconversion devices that are compatible with applications sensitive to solvent damage.  相似文献   

5.
Currently, the development of circularly polarized luminescent (CPL) materials has drawn extensive attention due to the numerous potential applications in optical data storage, displays, backlights in 3D displays, and so on. While the fabrication of CPL-active materials generally requires chiral luminescent molecules, the introduction of the “self-assembly” concept offers a new perspective in obtaining the CPL-active materials. Following this approach, various self-assembled materials, including organic-, inorganic-, and hybrid systems can be endowed with CPL properties. Benefiting from the advantages of self-assembly, not only chiral molecules, but also achiral species, as well as inorganic nanoparticles have potential to be self-assembled into chiral nanoassemblies showing CPL activity. In addition, the dissymmetry factor, an important parameter of CPL materials, can be enhanced through various pathways of self-assembly. Here, the present status and progress of self-assembled nanomaterials with CPL activity are reviewed. An overview of the key factors in regulating chiral emission materials at the supramolecular level will largely boost their application in multidisciplinary fields.  相似文献   

6.
Low-power photon upconversion (UC) based on sensitized triplet–triplet annihilation (sTTA) is considered as the most promising upward wavelength-shifting technique to enhance the light-harvesting capability of solar devices. Colloidal nanocrystals (NCs) with conjugated organic ligands have been recently proposed to extend the limited light-harvesting capability of molecular absorbers. Key to their functioning is efficient energy transfer (ET) from the NC to the triplet state of the ligands that sensitize free annihilator moieties responsible for the upconverted luminescence. The ET efficiency is typically limited by parasitic processes, above all nonradiative hole-transfer to the ligand highest occupied molecular orbital (HOMO). Here, a new exciton-manipulation approach is demonstrated that enables loss-free ET by electronically doping CdSe NCs with gold impurities that introduce a hole-accepting intragap state above the HOMO energy of 9-anthracene acid ligands. Upon photoexcitation, the NC photoholes are rapidly routed to the Au-level, producing a long-lived bound exciton in perfect resonance with the ligand triplet. This hinders hole-transfer leading to ≈100% efficient ET that translates into an upconversion quantum yield as high as ≈12% (≈24% in the normalized definition), which is the highest performance for NC-based upconverters based on sTTA to date and approaches the record efficiency of optimized organic systems.  相似文献   

7.
Developing advanced luminescent materials and techniques is of significant importance for anti-counterfeiting applications, and remains a huge challenge. In this work, a new and efficient approach for achieving efficient dual-mode luminescence with tunable color outputs via Gd3+-mediated interfacial energy transfer, Ce3+-assisted cross-relaxation, and core–shell nanostructuring strategy is reported. The introduction of Ce3+ into the inner core not only serves the regulation of upconversion emission, but also facilitates the ultraviolet photon harvesting and subsequent energy transfer to downshifting (DS) activators in the outer shell layer. Furthermore, the construction of the core@shell nanoarchitecture enables the spatial separation of upconverting activators and DS centers, which greatly suppresses their adverse cross-relaxation processes. Consequently, efficient and multicolor-tunable dual-mode emissions can be simultaneously observed in the pre-designed NaGdF4:Yb/Ho/Ce@NaYF4:X (X = Eu, Tb, Sm, Dy) core–shell nanostructures under 254 nm ultraviolet light and 980 nm laser excitation. The proof-of-concept experiment demonstrates that 2D-encoded patterns based on dual-mode emitting nanomaterials are very promising for anti-counterfeiting applications. It is believed that this preliminary study will advance the development of the fluorescent materials for potential applications in anti-counterfeiting and optical multiplexing.  相似文献   

8.
Chiral inorganic nanomaterials have recently attracted significant attention because of their many important applications, such as in asymmetric catalysis and chiral sensing. Here, chiral iron disulfide quantum dots (FeS2 QDs) are synthesized via chirality transfer using l/d ‐cysteine (Cys) as chiral ligands. The chiral FeS2 QDs are coassembled with two gelators to produce a cogel (l ‐ or d ‐[Gel+FeS2]) with a g‐factor value of ±0.06. Interestingly, the cogels display intense circularly polarized luminescence. More significantly, the degree of twisting (twist pitch) and the diameter of the cogels can be markedly regulated by illumination with circularly polarized light (CPL) in the ranges of 120–213 and 37–65 nm, respectively, which is caused by the CPL‐induced electron transfer. This research opens the way for the design of chiroptical devices with a wide range of functions and applications.  相似文献   

9.
Sensitized triplet–triplet‐annihilation‐based photon upconversion (TTA‐UC) permits the conversion of light into radiation of higher energy and involves a sequence of photophysical processes between two dyes. In contrast to other upconversion schemes, TTA‐UC allows the frequency shifting of low‐intensity light, which makes it particularly suitable for solar‐energy harvesting technologies. High upconversion yields can be observed for low viscosity solutions of dyes; but, in solid materials, which are better suited for integration in devices, the process is usually less efficient. Here, it is shown that this problem can be solved by using transparent nanodroplet‐containing polymers that consist of a continuous polymer matrix and a dispersed liquid phase containing the upconverting dyes. These materials can be accessed by a simple one‐step procedure that involves the free‐radical polymerization of a microemulsion of hydrophilic monomers, a lipophilic solvent, the upconverting dyes, and a surfactant. Several glassy and rubbery materials are explored and a range of dyes that enable TTA‐UC in different spectral regions are utilized. The materials display upconversion efficiencies of up to ≈15%, approaching the performance of optimized oxygen‐free reference solutions. The data suggest that the matrix not only serves as mechanically coherent carrier for the upconverting liquid phase, but also provides good protection from atmospheric oxygen.  相似文献   

10.
The conversion of low‐energy light into photons of higher energy based on sensitized triplet–triplet annihilation (sTTA) upconversion is emerging as the most promising wavelength‐shifting methodology because it operates efficiently at excitation powers as low as the solar irradiance. However, the production of solid‐state upconverters suited for direct integration in devices is still an ongoing challenge owing to the difficulties concerning the organization of two complementary moieties, the triplet sensitizer, and the annihilator, which must interact efficiently. This problem is solved by fabricating porous fluorescent nanoparticles wherein the emitters are integrated into robust covalent architectures. These emitting porous aromatic framework (ePAF) nanoparticles allow intimate interaction with the included metallo‐porphyrin as triplet sensitizers. Remarkably, the high concentration of framed chromophores ensures hopping‐mediated triplet diffusion required for TTA, yet the low density of the framework promotes their high optical features without quenching effects, typical of the solid state. A green‐to‐blue photon upconversion yield as high as 15% is achieved: a record performance among annihilators in a condensed phase. Furthermore, the engineered ePAF architecture containing covalently linked sensitizers produces full‐fledge solid‐state bicomponent particles that behave as autonomous nanodevices.  相似文献   

11.
The host–guest chemistry of metal–organic frameworks (MOFs) has enabled the derivation of numerous new functionalities. However, intrinsically chiral MOFs (CMOFs) with helical channels have not been used to realize crystalline circularly polarized luminescence (CPL) materials. Herein, enantiomeric pairs of MOF crystals are reported, where achiral fluorophores adhere to the inner surface of helical channels via biology-like H-bonds and hence inherit the helicity of the host MOFs, eventually amplifying the luminescence dissymmetry factor (glum) of the host l /d -CMOF (±1.50 × 10−3) to a maximum of ±0.0115 for the composite l /d -CMOF⊃fluorophores. l /d -CMOF⊃fluorophores in pairs generate bright color-tunable CPL and almost ideal white CPL (0.33, 0.32) with a record-high photoluminescence quantum yield of ≈30%, which are further assembled into a white circularly polarized light-emitting diode. The present strategy opens a new avenue for propagating the chirality of MOFs to realize universal chiroptical materials.  相似文献   

12.
Achieving single‐band upconversion is a challenging but rewarding approach to attain optimal performance in diverse applications, such as multiplexed molecular imaging, security coding, and nonlinear photonic devices. Here, highly efficient single‐band upconversion luminescence in the green spectral regime (16.4 times increase in emission at 525 nm) accomplished by realizing minimal energy loss from two‐photon upconversion in a newly synthesized liquid‐quenched amorphous matrix is reported. In contrast to previously reported single‐band upconversion, this phenomenon originates from the elevated transition probability of the host sensitive transition via changes in the host matrix's microstructure. The elevated transition probability facilitates ultrafast decay of upconversion luminescence with decay times as short as 0.2 µs, the fastest decay ever reported. The material in this study therefore has strong potential for use in photonic devices demanding high upconversion efficiency with a fast response time, which to date has been inaccessible using upconversion materials.  相似文献   

13.
Single‐junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low‐ or high‐energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c‐Si, GaAs) and emerging (perovskite, organic, dye‐sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next‐generation luminescent solar devices, are also discussed.  相似文献   

14.
《Optical Materials》2005,27(3):605-608
The steady luminescent materials La1−xErxOBr (x = 0, 0.0003, 0.01) were synthesized by a new NH4Br solid state reaction, and the structures were studied using XRD and Raman methods. Under 514.5 nm Ar+ laser excitation, the upconversion fluorescence spectra in LaOBr:Er3+ were recorded and investigated. It was found that four upconverted emission bands with peaks at 388 nm, 399 nm, 405 nm (violet) and 477 nm (blue) were observed. All these upconverted emissions were assigned, and the upconversion mechanism was deduced to be excited state absorption (ESA), by analyzing the energy level structures of Er3+ ions and measuring the power dependence of upconverted emission intensities.  相似文献   

15.
Bottom‐up multicomponent molecular self‐assembly is an efficient approach to fabricate and manipulate chiral nanostructures and their chiroptical activities such as the Cotton effect and circular polarized luminescence (CPL). However, the integrated coassembly suffers from spontaneous and inherent systematic pathway complexity with low yield and poor fidelity. Consequently, a rational design of chiral self‐assembled systems with more than two components remains a significant challenge. Herein, a modularized, ternary molecular self‐assembly strategy that generates chiroptically active materials at diverse hierarchical levels is reported. N‐terminated aromatic amino acids appended with binding sites for charge transfer and multiple hydrogen bonds undergo the evolution of supramolecular chirality with unique handedness and luminescent color, generating abundant CPL emission with high luminescence dissymmetry factor values in precisely controlled modalities. Ternary coassembly facilitates high‐water‐content hydrogel formation constituted by super‐helical nanostructures, demonstrating a helix to toroid topological transition. This discovery would shed light on developing complicated multicomponent systems in mimicking biological coassembly events.  相似文献   

16.
Controlling circularly polarized (CP) emission is key for both fundamental understanding and applications in the field of chiral photonics and electronics. Here, a completely new way to achieve this goal is presented. A luminescent thin film, made from a chiral conjugated phenylene bis-thiophenylpropynone able to self-assemble into ordered structures, emits highly circularly polarized light with opposite handedness from its two opposite faces. Such emergent nonreciprocal behavior in CP emission, so far unprecedented, represents a fundamental advance, opening new opportunities in design, preparation, and applications of CP emitting materials.  相似文献   

17.
Perovskite nanocrystals are attracting great interest due to their excellent photonic properties. Here, through a supramolecular self‐assembly approach, the perovskite nanocrystals (NCs) with a novel circularly polarized luminescence (CPL) are successfully endowed. It is found that the achiral perovskite NCs can coassemble with chiral gelator in nonpolar solvents, in which the gelator molecules modify the surface of the perovskite NCs. Through such cogelation, the molecular chirality can transfer to the NCs resulting in CPL signals with a dissymmetric factor (glum) up to 10?3. Furthermore, depending on the molecular chirality of the gelator, the CPL sense can be selected and the mirror‐imaged CPL is obtained. Such gels can be further embedded into the polymer film to facilitate flexible CPL devices. It is envisaged that this approach will afford a new insight into the designing of the functional chiroptical materials.  相似文献   

18.
Upconversion nanoparticles (UCNPs) doped with lanthanide ions that possess ladder-like energy levels can give out multiple emissions at specific ultra-violet or visible wavelengths irrespective of excitation light. However, precisely controlling energy migration processes between different energy levels of the same lanthanide ion to generate switchable emissions remains elusive. Herein, a novel dumbbell-shaped UCNP is reported with upconverted red emission switched to green emission when excitation wavelength changed from 980 to 808 nm. The sensitizer Yb ions are doped with activator Er ions and energy modulator Mn ions in NaYF4 core nanocrystal coated with an inner NaYF4:Yb shell to generate red emission after harvesting 980 nm excitation light, while an outer NaNdF4:Yb shell is coated to form a dumbbell shape to generate green emission upon 808 nm excitation. Such specially designed UCNPs with switchable green and red emissions are further explored for imaging of latent fingerprint and detection of explosive residues in the fingerprint simultaneously. This work suggests a novel research interest in fine-tuning of upconversion emissions through precisely controlling energy migration processes of the same lanthanide activator ion. Furthermore, use of these nanoparticles in other applications such as simultaneous dual-color imaging or orthogonal bidirectional photoactivation can be explored.  相似文献   

19.
Anisotropic photonic materials with linear dichroism are crucial components in many sensing, imaging, and communication applications. Such materials play an important role as polarizers, filters, and waveplates in photonic devices and circuits. Conventional crystalline materials with optical anisotropy typically show unidirectional linear dichroism over a broad wavelength range. The linear dichroism conversion phenomenon has not been observed in crystalline materials. The investigation of the unique linear dichroism conversion phenomenon in quasi‐1D hexagonal perovskite chalcogenide BaTiS3 is reported. This material shows a record level of optical anisotropy within the visible wavelength range. In contrast to conventional anisotropic optical materials, the linear dichroism polarity in BaTiS3 makes an orthogonal change at an optical wavelength corresponding to the photon energy of 1.78 eV. First‐principles calculations reveal that this anomalous linear dichroism conversion behavior originates from the different selection rules of the parallel energy bands in the BaTiS3 material. Wavelength‐dependent polarized Raman spectroscopy further confirms this phenomenon. Such a material, with linear dichroism conversion properties, could facilitate the sensing and control of the energy and polarization of light, and lead to novel photonic devices such as polarization‐wavelength selective detectors and lasers for multispectral imaging, sensing, and optical communication applications.  相似文献   

20.
Wang F  Deng R  Wang J  Wang Q  Han Y  Zhu H  Chen X  Liu X 《Nature materials》2011,10(12):968-973
Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号