首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Highly efficient planar heterojunction perovskite solar cells (PVSCs) with dopamine (DA) semiquinone radical modified poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (DA‐PEDOT:PSS) as a hole transporting layer (HTL) were fabricated. A combination of characterization techniques were employed to investigate the effects of DA doping on the electron donating capability of DA‐PEDOT:PSS, perovskite film quality and charge recombination kinetics in the solar cells. Our study shows that DA doping endows the DA‐PEDOT:PSS‐modified PVSCs with a higher radical content and greater perovskite to HTL charge extraction capability. In addition, the DA doping also improves work function of the HTL, increases perovskite film crystallinity, and the amino and hydroxyl groups in DA can interact with the undercoordinated Pb atoms on the perovskite crystal, reducing charge‐recombination rate and increasing charge‐extraction efficiency. Therefore, the DA‐PEDOT:PSS‐modified solar cells outperform those based on PEDOT:PSS, increasing open‐circuit voltage (V oc) and power conversion efficiency (PCE) to 1.08 V and 18.5%, respectively. Even more importantly, the efficiency of the unencapsulated DA‐PEDOT:PSS‐based PVSCs are well retained with only 20% PCE loss after exposure to air for 250 hours. These in‐depth insights into structure and performance provide clear and novel guidelines for the design of effective HTLs to facilitate the practical application of inverted planar heterojunction PVSCs.  相似文献   

2.
Producing high efficiency solar cells without high‐temperature processing or use of additives still remains a challenge with the two‐step process. Here, the solution processing of MAPbI3 from PbI2 films in N,N‐dimethylformamide (DMF) is investigated. In‐situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) measurements reveal a sol–gel process involving three PbI2‐DMF solvate complexes—disordered (P0) and ordered (P1, P2)—prior to PbI2 formation. When the appropriate solvated state of PbI2 is exposed to MAI (methylammonium Iodide), it can lead to rapid and complete room temperature conversion into MAPbI3 with higher quality films and improved solar cell performance. Complementary in‐situ optical reflectance, absorbance, and quartz crystal microbalance with dissipation (QCM‐D) measurements show that dry PbI2 can take up only one third of the MAI taken up by the solvated‐crystalline P2 phase of PbI2, requiring additional annealing and yet still underperforming. The perovskite solar cells fabricated from the ordered P2 precursor show higher power conversion efficiency (PCE) and reproducibility than devices fabricated from other cases. The average PCE of the solar cells is greatly improved from 13.2(±0.53)% (from annealed PbI2) to 15.7(±0.35)% (from P2) reaching up to 16.2%. This work demonstrates the importance of controlling the solvation of PbI2 as an effective strategy for the growth of high‐quality perovskite films and their application in high efficiency and reproducible solar cells.  相似文献   

3.
For commercial applications, it is a challenge to find suitable and low‐cost hole‐transporting material (HTM) in perovskite solar cells (PSCs), where high efficiency spiro‐OMeTAD and PTAA are expensive. A HTM based on 9,9‐dihexyl‐9H‐fluorene and N,N‐di‐p‐methylthiophenylamine (denoted as FMT) is designed and synthesized. High‐yield FMT with a linear structure is synthesized in two steps. The dopant‐free FMT‐based planar p‐i‐n perovskite solar cells (pp‐PSCs) exhibit a high power conversion efficiency (PCE) of 19.06%, which is among the highest PCEs reported for the pp‐PSCs based on organic HTM. For comparison, a PEDOT:PSS HTM‐based pp‐PSC is fabricated under the same conditions, and its PCE is found to be 13.9%.  相似文献   

4.
To achieve high‐performance large‐area flexible polymer solar cells (PSCs), one of the challenges is to develop new interface materials that possess a thermal‐annealing‐free process and thickness‐insensitive photovoltaic properties. Here, an n‐type self‐doping fullerene electrolyte, named PCBB‐3N‐3I, is developed as electron transporting layer (ETL) for the application in PSCs. PCBB‐3N‐3I ETL can be processed at room temperature, and shows excellent orthogonal solvent processability, substantially improved conductivity, and appropriate energy levels. PCBB‐3N‐3I ETL also functions as light‐harvesting acceptor in a bilayer solar cell, contributing to the overall device performance. As a result, the PCBB‐3N‐3I ETL‐based inverted PSCs with a PTB7‐Th:PC71BM photoactive layer demonstrate an enhanced power conversion efficiency (PCE) of 10.62% for rigid and 10.04% for flexible devices. Moreover, the device avoids a thermal annealing process and the photovoltaic properties are insensitive to the thickness of PCBB‐3N‐3I ETL, yielding a PCE of 9.32% for the device with thick PCBB‐3N‐3I ETL (61 nm). To the best of one's knowledge, the above performance yields the highest efficiencies for the flexible PSCs and thick ETL‐based PSCs reported so far. Importantly, the flexible PSCs with PCBB‐3N‐3I ETL also show robust bending durability that could pave the way for the future development of high‐performance flexible solar cells.  相似文献   

5.
The two‐step conversion process consisting of metal halide deposition followed by conversion to hybrid perovskite has been successfully applied toward producing high‐quality solar cells of the archetypal MAPbI3 hybrid perovskite, but the conversion of other halide perovskites, such as the lower bandgap FAPbI3, is more challenging and tends to be hampered by the formation of hexagonal nonperovskite polymorph of FAPbI3, requiring Cs addition and/or extensive thermal annealing. Here, an efficient room‐temperature conversion route of PbI2 into the α‐FAPbI3 perovskite phase without the use of cesium is demonstrated. Using in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and quartz crystal microbalance with dissipation (QCM‐D), the conversion behaviors of the PbI2 precursor from its different states are compared. α‐FAPbI3 forms spontaneously and efficiently at room temperature from P2 (ordered solvated polymorphs with DMF) without hexagonal phase formation and leads to complete conversion after thermal annealing. The average power conversion efficiency (PCE) of the fabricated solar cells is greatly improved from 16.0(±0.32)% (conversion from annealed PbI2) to 17.23(±0.28)% (from solvated PbI2) with a champion device PCE > 18% due to reduction of carrier recombination rate. This work provides new design rules toward the room‐temperature phase transformation and processing of hybrid perovskite films based on FA+ cation without the need for Cs+ or mixed halide formulation.  相似文献   

6.
Regulation of the crystallization of perovskite films and avoiding the oxidation of Sn2+ during the deposition process are very important for achieving Sn/Pb binary perovskite solar cells (PVSCs) with high power conversion efficiency (PCE) and producibility. In this work, a high‐quality HC(NH2)2Pb0.7Sn0.3I3 (FAPb0.7Sn0.3I3) film deposited from the two‐step solution process by introducing methylammonium thiocyanate (MASCN) as a bifunctional additive into the precursor solution containing PbI2 and SnI2 is reported. MASCN can not only tune the morphology of the perovskite film but also stabilize the precursor solution via retarding the oxidation of Sn2+ through a strong coordination between SCN? and Sn2+. The Sn/Pb binary inverted PVSCs based on FAPb0.7Sn0.3I3 present a high fill factor of 0.79 and the best PCE of 16.26% in the case of 0.25 MASCN addition. The device fabrication producibility is also greatly improved due to the stabilized precursor solution with the aid of MASCN. The PCE of the device is almost independent of the storage time of the precursor solution within 124 d in the N2‐filled glove box. These results indicate that the precursor engineering with multifunctionality additive is an effective approach toward highly efficient and producible PVSCs for future commercialization.  相似文献   

7.
The electron transport layer (ETL) plays a crucial part in extracting electron carriers while optimizing the interfacial contact of perovskite/electrode in planar heterojunction perovskite solar cells (PVSCs). Despite various ETLs being designed for efficient PVSCs, there exists hardly any research on the effect of molecular stacking order on device performance. Herein, poly(ethylene-co-vinyl acetate) (EVA) is employed as the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) solution additive. The strong binding energy between EVA with PC61BM promotes the molecular stacking order of ETLs, which alleviates the morphology inhomogeneity, possesses a matched energy level, blocks ion migration, and improves the water–oxygen barrier of perovskite devices. The blade-coated MAPbI3-based PVSCs achieve a power conversion efficiency (PCE) of 19.32% with positive reproducibility and negligible hysteresis, as well as maintain 90% and 80% of the initial PCE after storage under inert and ambient conditions (52% humidity) for 1500 h without encapsulation. This strategy also improves the champion PCE of CsFAMA-based PVSCs to 20.33%. These findings demonstrate that the regulation of molecular stacking order is a valid approach to optimize interfacial charge-carrier recombination in PVSCs, which meet the demand for high-performance ETL in large-area PVSCs and improve the upscaling of the fabrication technology toward practical applications.  相似文献   

8.
Understanding the factors that limit the performance of perovskite solar cells (PSCs) can be enriched by detailed temperature (T)‐dependent studies. Based on p‐i‐n type PSCs with prototype methylammonium lead triiodide (MAPbI3) perovskite absorbers, T‐dependent photovoltaic properties are explored and negative T‐coefficients for the three device parameters (VOC, JSC, and FF) are observed within a wide low T‐range, leading to a maximum power conversion efficiency (PCE) of 21.4% with an impressive fill factor (FF) approaching 82% at 220 K. These T‐behaviors are explained by the enhanced interfacial charge transfer, reduced charge trapping with suppressed nonradiative recombination and narrowed optical bandgap at lower T. By comparing the T‐dependent device behaviors based on MAPbI3 devices containing a PASP passivation layer, enhanced PCE at room temperature is observed but different tendencies showing attenuating T‐dependencies of JSC and FF, which eventually leads to nearly T‐invariable PCEs. These results indicate that charge extraction with the utilized all‐organic charge transporting layers is not a limiting factor for low‐T device operation, meanwhile the trap passivation layer of choice can play a role in the T‐dependent photovoltaic properties and thus needs to be considered for PSCs operating in a temperature‐variable environment.  相似文献   

9.
Perovskite solar cells (PVSCs) are promising photovoltaic technologies for realizing power sources with outstanding power conversion efficiency (PCE) and low‐cost properties. However, the extraordinary photovoltaic performance can be maximized only if an extremely stabilized device structure is developed. Here, a novel glued poly(ethylene‐co‐vinyl acetate) (EVA) interfacial layer is introduced to fabricate highly efficient and stable PVSCs with excellent waterproofness and flexibility. This strategy can effectively passivate the perovskite surface, reduce defect density, and balance charge transfer, which leads to a champion PCE of 19.31% for a 0.1 cm2 device and 11.73% for a 25 cm2 solar module. More importantly, the formation of a glued EVA thin layer on the surface of perovskite can inhibit ionic migration to the Ag electrode, form favorable interfacial contact and adhesive interaction with the perovskite/[6,6]‐phenyl‐C61‐butyric acid methyl ester to sustain mechanical bending, and produce significant waterproofness from moisture invasion, thus facilitating improvement in the operational stability of the PVSCs. The EVA‐treated PVSCs exhibit superior PCE values of 15.12% for a flexible device (0.1 cm2) and 8.95% for a flexible module (25 cm2), as well as over 85% retention after 5000 bending cycles, which opens up a new strategy for the practical application of PVSCs in portable and wearable electronics.  相似文献   

10.
Hybrid organic–inorganic halide perovskites have emerged at the forefront of solution‐processable photovoltaic devices. Being the perovskite precursor mixture a complex equilibrium of species, it is very difficult to predict/control their interactions with different substrates, thus the final film properties and device performances. Here the wettability of CH3NH3PbI3 (MAPbI3) onto poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer is improved by exploiting the cooperative effect of graphene oxide (GO) and glucose inclusion. The glucose, in addition, triggers the reduction of GO, enhancing the conductivity of the PEDOT:PSS+GO+glucose based nanocomposite. The relevance of this approach toward photovoltaic applications is demonstrated by fabricating a hysteresis‐free MAPbI3 solar cells displaying a ≈37% improvement in power conversion efficiency if compared to a device grown onto pristine PEDOT:PSS. Most importantly, VOC reaches values over 1.05 V that are among the highest ever reported for PEDOT:PSS p‐i‐n device architecture, suggesting minimal recombination losses, high hole‐selectivity, and reduced trap density at the PEDOT:PSS along with optimized MAPbI3 coverage.  相似文献   

11.
The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer.  相似文献   

12.
The newly developed Pb[N(CN)2]2 additives have been demonstrated for enhancing efficiency from 14.7% to 17.4% and from 15.5% to 18.2% for conventional (FTO/TiO2 as the substrate) and inverted (FTO/NiOx as the substrate) MAPbI3 perovskite solar cells (PVSCs), respectively. Different from many effective additives of PVSCs, Pb[N(CN)2]2 provides the first visual evidences (colors changing) of additives participating in the solution adduct of MAPbI3 precursors. Further experimental results reveal that the Pb[N(CN)2]2 additives slowdown the formation process of the MAPbI3 crystallite thin film, of which the grain size reaches up to 900 nm with 0.2 M concentration of Pb[N(CN)2]2 additives in the MAPbI3 precursor solutions (1 M), accordant with the optimal concentration of Pb[N(CN)2]2 additives in enhancing efficiency of MAPbI3 PVSCs. We understand the role of Pb[N(CN)2]2 additives in MAPbI3 PVSCs through color photos (of precursor adduct solution and the adduct solid isolated from solutions), infra-red (of adduct solid isolated from solution), UV–visible absorption, photoluminescence, static and time-dependent powder X-ray spectroscopies.  相似文献   

13.
A high‐quality polycrystalline SnO2 electron‐transfer layer is synthesized through an in situ, low‐temperature, and unique butanol–water solvent‐assisted process. By choosing a mixture of butanol and water as a solvent, the crystallinity is enhanced and the crystallization temperature is lowered to 130 °C, making the process fully compatible with flexible plastic substrates. The best solar cells fabricated using these layers achieve an efficiency of 20.52% (average 19.02%) which is among the best in the class of planar n–i–p‐type perovskite (MAPbI3) solar cells. The strongly reduced crystallization temperature of the materials allows their use on a flexible substrate, with a resulting device efficiency of 18%.  相似文献   

14.
Bulk‐heterojunction solar cells are reported with an enhanced power conversion efficiency (PCE) based on a newly designed semiconducting selenophene‐thienopyrrolodione (TPD) copolymer blended with [6,6]‐phenyl C71 butyric acid methyl‐ester. The solar cells are fabricated using simple solution processing (implying low‐cost fabrication). The relatively deep highest occupied molecular orbital (HOMO) level leads to a correspondingly high open‐circuit voltage of 0.88 V. The PCE approaches 5.8% when Clevious P VP AI4083 is used as the hole‐transport interlayer, with an optimized active layer thickness of approximately 95 nm, and a donor‐acceptor blend ratio of 1:1. A fill factor (FF) of 0.62 is achieved. The use of additives does not seem to be beneficial in this blended system, due to the achievement of proper phase separation in the as‐cast films. Also, the BHJ devices with a 3% ratio of a 1‐chloronaphthalene (CN) additive exhibit much more severe oxidative degradation from the decreased FF with a high series resistance than BHJ devices without additive. The selenophene‐TPD based BHJ solar cell is a promising candidate for high‐performance single cells with a low‐cost additive‐free fabrication and a long‐term stable operation.  相似文献   

15.
The utilization of a conjugated polyelectrolyte‐ionic liquid crystal (CPE‐ILC) complex as electron transporting layer (ETL) to improve the compatibility between the ITO and hydrophobic active layer and to promote the dipole orientation at cathode interface is reported. Simultaneously, a hole transporting layer (HTL) of solution processed tungsten oxide together with poly(2,6‐bis(trimethyltin)‐4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐4,6‐Dibromo‐thieno[3,4‐b]thiophene‐2‐carboxylic acid 2‐[2‐(2‐methoxy‐ethoxy)‐ethoxy]‐ethyl ester) (PBDTT‐TT‐TEG) efficiently shifts the work function of Ag electrode in this device. The interfacial modification of these interlayers achieves energy alignment at both electrodes. The power conversion efficiency (PCE) of the PSC based on ITO/PFN‐CbpSO/PBDTTT‐C‐T:PC70BM/PBDTT‐TT‐TEG/WO3/Ag with solution processed interlayers reaches to 7.8%. It is worthy to note that except for the electrodes, all layers of device are fabricated by solution process at room temperature and without annealing. In the case of incorporating ZnO layer into this device, the device efficiency further increases to 8.5%, which is the best value reported from PBDTTT‐C‐T:PC70BM‐based solar cells with solution processed interlayers at both electrodes so far.  相似文献   

16.
Inexpensive metal Al is scarcely utilized as the cathode in the perovskite solar cells (PVSCs) because its violent reaction with perovskite active layer results in poor device stability in air. It is urgent to improve the efficiency and stability of PVSCs with Al as the cathode for mass production of low-cost PVSCs. Herein, a novel solution-processed cathode interlayer material, surfactant-encapsulated polyoxometalate complex [(C8H17)4N]4[SiW12O40] (TOASiW12) is reported. Using TOASiW12-modified Al as the cathode, the power conversion efficiency (PCE) of 20.64% has been achieved in the inverted PVSCs. The findings demonstrate that a thin TOASiW12 layer can effectively obstruct the chemical reaction between Al and perovskite layer, and significantly enhance the device stability. The unencapsulated devices with TOASiW12-modified Al retain more than 80% of the initial PCE after 350 h storage in the ambient atmosphere at 45% relative humidity. This study provides an excellent alternative cathode interlayer material for efficient and stable inverted PVSCs.  相似文献   

17.
A novel framework of azide containing photo‐crosslinkable, conducting copolymer, that is, poly(azido‐styrene)‐random‐poly(triphenylamine) (X‐PTPA), is reported as a hole‐transporting material for efficient solution‐processed, multi‐layer, organic light emitting diodes (OLEDs). A facile and energy‐efficient crosslinking process is demonstrated with UV irradiation (254 nm, 2 mW/cm2) at a short exposure time (5 min). By careful design of X‐PTPA, in which 5 mol% of the photo‐crosslinkable poly(azido‐styrene) is copolymerized with hole‐transporting poly(triphenylamine) (X‐PTPA‐5), the adverse effect of the crosslinking of azide moieties is prevented to maximize the performances of X‐PTPA‐5. Since the photo‐crosslinking chemistry of azide molecules does not involve any photo‐initiators, superior hole‐transporting ability is achieved, producing efficient devices. To evaluate the performances of X‐PTPA‐5 as a hole‐transporting/electron‐blocking layer, Ir(ppy)3‐based, solution‐processable OLEDs are fabricated. The results show high EQE (11.8%), luminous efficiency (43.7 cd/A), and power efficiency (10.4 lm/W), which represent about twofold enhancement over the control device without X‐PTPA‐5 film. Furthermore, micro‐patterned OLEDs with the photo‐crosslinkable X‐PTPA‐5 can be fabricated through standard photolithography. The versatility of this approach is also demonstrated by introducing the same azide moiety into other hole‐transporting materials such as poly(carbazole) (X‐PBC).  相似文献   

18.
Improving the stability of high-performance perovskite solar cells (PVSCs) against humid air poses a substantial challenge for their future development. To address this issue, here we have incorporated a trace amount of 4-fluorobenzylammonium iodide into MAPbI3 based PVSCs, and significantly improved the efficiency and stability. Through spectroscopy measurements, space charge limited current analysis, etc., we find that the incorporation of 4-fluorobenzylammonium iodide can passivate defects, improve charge transport, and thus, increase the power conversion efficiency (PCE) from 18.1% to 19.1%. In the meanwhile, the fluorinated benzene moiety confers the hydrophobic character to the perovskite film and device, and enhances the device stability against moisture. This work should have implication toward stable and high-performance PVSCs for commercialization.  相似文献   

19.
Solution‐processed organic photovoltaics (OPVs) have continued to show their potential as a low‐cost power generation technology; however, there has been a significant gap between device efficiencies fabricated with lab‐scale techniques—i.e., spin coating—and scalable deposition methods. Herein, temperature‐controlled slot die deposition is developed for the photoactive layer of OPVs. The influence of solution and substrate temperatures on photoactive films and their effects on power conversion efficiency (PCE) in slot die coated OPVs using a 3D printer‐based slot die coater are studied on the basis of device performance, molecular structure, film morphology, and carrier transport behavior. These studies clearly demonstrate that both substrate and solution temperatures during slot die coating can influence device performance, and the combination of hot substrate (120 °C) and hot solution (90 °C) conditions result in mechanically robust films with PCE values up to 10.0% using this scalable deposition method in air. The efficiency is close to that of state‐of‐the‐art devices fabricated by spin coating. The deposition condition is translated to roll‐to‐roll processing without further modification and results in flexible OPVs with PCE values above 7%. The results underscore the promising potential of temperature‐controlled slot die coating for roll‐to‐roll manufacturing of high performance OPVs.  相似文献   

20.
The power‐conversion efficiency (PCE) of single‐junction organic solar cells (OSCs) has exceeded 16% thanks to the development of non‐fullerene acceptor materials and morphological optimization of active layer. In addition, interfacial engineering always plays a crucial role in further improving the performance of OSCs based on a well‐established active‐layer system. Doping of graphitic carbon nitride (g‐C3N4) into poly(3,4‐ethylene‐dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for PM6:Y6‐based OSCs is reported, boosting the PCE to almost 16.4%. After being added into the PEDOT:PSS, the g‐C3N4 as a Bronsted base can be protonated, weakening the shield effect of insulating PSS on conductive PEDOT, which enables exposures of more PEDOT chains on the surface of PEDOT:PSS core‐shell structure, and thus increasing the conductivity. Therefore, at the interface between g‐C3N4 doped HTL and PM6:Y6 layer, the charge transport is improved and the charge recombination is suppressed, leading to the increases of fill factor and short‐circuit current density of devices. This work demonstrates that doping g‐C3N4 into PEDOT:PSS is an efficient strategy to increase the conductivity of HTL, resulting in higher OSC performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号