首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the past two decades, metal–organic frameworks (MOFs), a type of porous material, have aroused great interest as precursors or templates for the derivation of metal oxides and composites for the next generation of electrochemical energy storage applications owing to their high specific surface areas, controllable structures, and adjustable pore sizes. The electrode materials, which affect the performance in practical applications, are pivotal components of batteries and supercapacitors. Metal oxide composites derived from metal–organic frameworks possessing high reversible capacity and superior rate and cycle performance are excellent electrode materials. In this Review, potential applications for MOF‐derived metal oxide composites for lithium‐ion batteries, sodium‐ion batteries, lithium–oxygen batteries, and supercapacitors are studied and summarized. Finally, the challenges and opportunities for future research on MOF‐derived metal oxide composites are proposed on the basis of academic knowledge from the reported literature as well as from experimental experience.  相似文献   

2.
Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.  相似文献   

3.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

4.
Metal organic frameworks (MOFs), as an original kind of organic–inorganic porous material, are constructed with metal centers and organic linkers via a coordination complexation reaction. Among uncountable MOF materials, iron‐containing metal organic frameworks (Fe‐MOFs) have excellent potential in practical applications owing to their many fascinating properties, such as diverse structure types, low toxicity, preferable stability, and tailored functionality. Here, recent research progresses of Fe‐MOFs in attractive features, synthesis, and multifunctional applications are described. Fe‐MOFs with porosity and tailored functionality are discussed according to the design of building blocks. Four types of synthetic methods including solvothermal, hydrothermal, microwave, and dry gel conversion synthesis are illustrated. Finally, the applications of Fe‐MOFs in Li‐ion batteries, sensors, gas storage, separation in gas and liquid phases, and catalysis are elucidated, focusing on the mechanism. The aim is to provide prospects for extending Fe‐MOFs in more practical applications.  相似文献   

5.
Covalent organic frameworks (COF) or metal–organic frameworks have attracted significant attention for various applications due to their intriguing tunable micro/mesopores and composition/functionality control. Herein, a coordination‐induced interlinked hybrid of imine‐based covalent organic frameworks and Mn‐based metal–organic frameworks (COF/Mn‐MOF) based on the Mn? N bond is reported. The effective molecular‐level coordination‐induced compositing of COF and MOF endows the hybrid with unique flower‐like microsphere morphology and superior lithium‐storage performances that originate from activated Mn centers and the aromatic benzene ring. In addition, hollow or core–shell MnS trapped in N and S codoped carbon (MnS@NS‐C‐g and MnS@NS‐C‐l) are also derived from the COF/Mn‐MOF hybrid and they exhibit good lithium‐storage properties. The design strategy of COF–MOF hybrid can shed light on the promising hybridization on porous organic framework composites with molecular‐level structural adjustment, nano/microsized morphology design, and property optimization.  相似文献   

6.
Utilization of microbes as the carbon source and structural template to fabricate porous carbon has incentivized great interests owing to their diverse micromorphology and intricate intracellular structure, apart from the obvious benefit of “turning waste into wealth.” Challenges remain to preserve the biological structure through the harsh and laborious post‐synthetic treatments, and tailor the functionality as desired. Herein, Escherichia coli is directly coated with metal–organic frameworks (MOFs) through in situ assembly to fabricate N, P co‐doped porous carbon capsules expressing self‐phosphorized metal phosphides. While the MOF coating serves as an armoring layer for facilitating the morphology inheritance from the bio‐templates and provides metal sources for generating extra porosity and electrochemically active sites, the P‐rich phospholipids and N‐rich proteins from the plasma membrane enable carbon matrix doping and further yield metal phosphides. These unique structural and compositional features endow the carbon capsules with great capabilities in suppressing polysulfide shuttling and catalyzing reversible oxygen conversion, ultimately leading to the superb performance of lithium–sulfur batteries and zinc–air batteries. Combining the bio‐templating strategy with hierarchical MOF assembly, this work opens a new avenue for the fabrication of highly porous and functional carbon for advanced energy applications.  相似文献   

7.
Hollow materials derived from metal–organic frameworks (MOFs), by virtue of their controllable configuration, composition, porosity, and specific surface area, have shown fascinating physicochemical properties and widespread applications, especially in electrochemical energy storage and conversion. Here, the recent advances in the controllable synthesis are discussed, mainly focusing on the conversion mechanisms from MOFs to hollow‐structured materials. The synthetic strategies of MOF‐derived hollow‐structured materials are broadly sorted into two categories: the controllable synthesis of hollow MOFs and subsequent pyrolysis into functional materials, and the controllable conversion of solid MOFs with predesigned composition and morphology into hollow structures. Based on the formation processes of hollow MOFs and the conversion processes of solid MOFs, the synthetic strategies are further conceptually grouped into six categories: template‐mediated assembly, stepped dissolution–regrowth, selective chemical etching, interfacial ion exchange, heterogeneous contraction, and self‐catalytic pyrolysis. By analyzing and discussing 14 types of reaction processes in detail, a systematic mechanism of conversion from MOFs to hollow‐structured materials is exhibited. Afterward, the applications of these hollow structures as electrode materials for lithium‐ion batteries, hybrid supercapacitors, and electrocatalysis are presented. Finally, an outlook on the emergent challenges and future developments in terms of their controllable fabrications and electrochemical applications is further discussed.  相似文献   

8.
With the inspiration of developing bifunctional electrode materials for reversible oxygen electrocatalysis, one strategy of heteroatom doping is proposed to fabricate dual metal single‐atom catalysts. However, the identification and mechanism functions of polynary single‐atom structures remain elusive. Atomically dispersed binary Co‐Ni sites embedded in N‐doped hollow carbon nanocubes (denoted as CoNi‐SAs/NC) are synthesized via proposed pyrolysis of dopamine‐coated metal‐organic frameworks. The atomically isolated bimetallic configuration in CoNi‐SAs/NC is identified by combining microscopic and spectroscopic techniques. When employing as oxygen electrocatalysts in alkaline medium, the resultant CoNi‐SAs/NC hybrid manifests outstanding catalytic performance for bifunctional oxygen reduction/evolution reactions, boosting the realistic rechargeable zinc–air batteries with high efficiency, low overpotential, and robust reversibility, superior to other counterparts and state‐of‐the‐art precious‐metal catalysts. Theoretical computations based on density functional theory demonstrate that the homogenously dispersed single atoms and the synergistic effect of neighboring Co‐Ni dual metal center can optimize the adsorption/desorption features and decrease the overall reaction barriers, eventually promoting the reversible oxygen electrocatalysis. This work not only sheds light on the controlled synthesis of atomically isolated advanced materials, but also provides deeper understanding on the structure–performance relationships of nanocatalysts with multiple active sites for various catalytic applications.  相似文献   

9.
Carbon micro‐/nanocages have attracted great attention owing to their wide potential applications. Herein, a self‐templated strategy is presented for the synthesis of a hydrangea‐like superstructure of open carbon cages through morphology‐controlled thermal transformation of core@shell metal–organic frameworks (MOFs). Direct pyrolysis of core@shell zinc (Zn)@cobalt (Co)‐MOFs produces well‐defined open‐wall nitrogen‐doped carbon cages. By introducing guest iron (Fe) ions into the core@shell MOF precursor, the open carbon cages are self‐assembled into a hydrangea‐like 3D superstructure interconnected by carbon nanotubes, which are grown in situ on the Fe–Co alloy nanoparticles formed during the pyrolysis of Fe‐introduced Zn@Co‐MOFs. Taking advantage of such hierarchically porous superstructures with excellent accessibility, synergetic effects between the Fe and the Co, and the presence of catalytically active sites of both metal nanoparticles and metal–Nx species, this superstructure of open carbon cages exhibits efficient bifunctional catalysis for both oxygen evolution reaction and oxygen reduction reaction, achieving a great performance in Zn–air batteries.  相似文献   

10.
Metal–organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF‐based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy‐related applications of complex nanostructures derived from MOF‐based precursors is provided. After a brief summary of synthetic methods of MOF‐based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single‐shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium‐ion batteries, hybrid supercapacitors, water‐splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF‐based‐templates for electrochemical energy storage and conversion applications are outlined.  相似文献   

11.
Electrochemical energy conversion and storage devices such as fuel cells and metal–air batteries have been extensively studied in recent decades for their excellent conversion efficiency, high energy capacity, and low environmental impact. However, sluggish kinetics of the oxygen‐related reactions at air cathodes, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are still worth improving. Noble metals such as platinum (Pt), iridium (Ir), ruthenium (Ru) and their oxides are considered as the benchmark ORR and OER electrocatalysts, but they are expensive and prone to be poisoned due to the fuel crossover effect, and may suffer from agglomeration and leaching after long‐term usage. To mitigate these limits, it is highly desirable to design alternative ORR/OER electrocatalysts with prominent performance. Metal–organic frameworks (MOFs) are a class of porous crystalline materials consisting metal ions/clusters coordinated by organic ligands. Their crystalline structure, tunable pore size and high surface area afford them wide opportunities as catalytic materials. This Review covers MOF‐derived ORR/OER catalysts in electrochemical energy conversion, with a focus on the different strategies of material design and preparation, such as composition control and nanostructure fabrication, to improve the activity and durability of MOF‐derived electrocatalysts.  相似文献   

12.
Solid‐state electrolytes are the key to the development of lithium‐based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid‐state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal–organic frameworks (MOFs), which transforms the MOF scaffolds into ionic‐channel analogs with lithium‐ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid‐state lithium‐ion conducting electrolytes.  相似文献   

13.
Ternary transition metal oxides (TMOs) are highly potential electrode materials for lithium ion batteries (LIBs) due to abundant defects and synergistic effects with various metal elements in a single structure. However, low electronic/ionic conductivity and severe volume change hamper their practical application for lithium storage. Herein, nanosheet‐assembled hollow single‐hole Ni–Co–Mn oxide (NHSNCM) spheres with oxygen vacancies can be obtained through a facile hydrothermal reaction, which makes both ends of each nanosheet exposed to sufficient free space for volume variation, electrolyte for extra active surface area, and dual ion diffusion paths compared with airtight hollow structures. Furthermore, oxygen vacancies could improve ion/electronic transport and ion insertion/extraction process of NHSNCM spheres. Thus, oxygen‐vacancy‐rich NHSNCM spheres embedded into a 3D porous carbon nanotube/graphene network as the anode film ensure efficient electrolyte infiltration into both the exterior and interior of porous and open spheres for a high utilization of the active material, showing an excellent electrochemical performance for LIBs (1595 mAh g?1 over 300 cycles at 2 A g?1, 441.6 mAh g?1 over 4000 cycles at 10 A g?1). Besides, this straightforward synthetic method opens an efficacious avenue for the construction of various nanosheet‐assembled hollow single‐hole TMO spheres for potential applications.  相似文献   

14.
Novel composite separators containing metal–organic‐framework (MOF) particles and poly(vinyl alcohol) are fabricated by the electrospinning process. The MOF particles containing opened metal sites can spontaneously adsorb anions while allowing effective transport of lithium ions in the electrolyte, leading to dramatically improved lithium‐ion transference number tLi+ (up to 0.79) and lithium‐ion conductivity. Meanwhile, the incorporation of the MOF particles alleviates the decomposition of the electrolyte, enhances the electrode reaction kinetics, and reduces the interface resistance between the electrolyte and the electrodes. Implementation of such composite separators in conventional lithium‐ion batteries leads to significantly improved rate capability and cycling durability, offering a new prospective toward high‐performance lithium‐ion batteries.  相似文献   

15.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

16.
Hydrogen energy is commonly considered as a clean and sustainable alternative to the traditional fossil fuels. Toward universal utilization of hydrogen energy, developing high‐efficiency, low‐cost, and sustainable energy conversion technologies, especially water‐splitting electrolyzers and fuel cells, is of paramount significance. In order to enhance the energy conversion efficiency of the water‐splitting electrolyzers and fuel cells, earth‐abundant and stable electrocatalysts are essential for accelerating the sluggish kinetics of hydrogen and oxygen reactions. In the past decade, carbon‐rich nanomaterials have emerged as a promising class of hydrogen and oxygen electrocatalysts. Here, the development and electrocatalytic activity of various carbon‐rich materials, including metal‐free carbon, conjugated porous polymers, graphdiyne, covalent organic frameworks (COFs), atomic‐metal‐doped carbon, as well as metal–organic frameworks (MOFs), are demonstrated. In particular, the correlations between their porous nanostructures/electronic structures of active centers and electrocatalytic performances are emphatically discussed. Therefore, this review article guides the rational design and synthesis of high‐performance, metal‐free, and noble‐metal‐free carbon‐rich electrocatalysts and eventually advances the rapid development of water‐splitting electrolyzers and fuel cells toward practical applications.  相似文献   

17.
Metal–organic frameworks (MOFs) featuring versatile topological architectures are considered to be efficient self‐sacrificial templates to achieve mesoporous nanostructured materials. A facile and cost‐efficient strategy is developed to scalably fabricate binary metal oxides with complex hollow interior structures and tunable compositions. Bimetal–organic frameworks of Ni‐Co‐BTC solid microspheres with diverse Ni/Co ratios are readily prepared by solvothermal method to induce the Ni x Co3? x O4 multishelled hollow microspheres through a morphology‐inherited annealing treatment. The obtained mixed metal oxides are demonstrated to be composed of nanometer‐sized subunits in the shells and large void spaces left between adjacent shells. When evaluated as anode materials for lithium‐ion batteries, Ni x Co3? x O4‐0.1 multishelled hollow microspheres deliver a high reversible capacity of 1109.8 mAh g?1 after 100 cycles at a current density of 100 mA g?1 with an excellent high‐rate capability. Appropriate capacities of 832 and 673 mAh g?1 could also be retained after 300 cycles at large currents of 1 and 2 A g?1, respectively. These prominent electrochemical properties raise a concept of synthesizing MOFs‐derived mixed metal oxides with multishelled hollow structures for progressive lithium‐ion batteries.  相似文献   

18.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious‐metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double‐shelled hybrid nanocages with outer shells of Co‐N‐doped graphitic carbon (Co‐NGC) and inner shells of N‐doped microporous carbon (NC) by templating against core–shell metal–organic frameworks. The double‐shelled NC@Co‐NGC nanocages well integrate the high activity of Co‐NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn–air batteries. First‐principles calculations reveal that the high catalytic activities of Co‐NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow‐site C atoms with respect to the Co lattice in the Co‐NGC structure is a vital rate‐determining step to achieve excellent bifunctional electrocatalytic activity.  相似文献   

19.
Metal–organic framework (MOF) composites have recently been considered as promising precursors to derive advanced metal/carbon‐based materials for various energy‐related applications. Here, a dual‐MOF‐assisted pyrolysis approach is developed to synthesize Co–Fe alloy@N‐doped carbon hollow spheres. Novel core–shell architectures consisting of polystyrene cores and Co‐based MOF composite shells encapsulated with discrete Fe‐based MOF nanocrystallites are first synthesized, followed by a thermal treatment to prepare hollow composite materials composed of Co–Fe alloy nanoparticles homogeneously distributed in porous N‐doped carbon nanoshells. Benefitting from the unique structure and composition, the as‐derived Co–Fe alloy@N‐doped carbon hollow spheres exhibit enhanced electrocatalytic performance for oxygen reduction reaction. The present approach expands the toolbox for design and preparation of advanced MOF‐derived functional materials for diverse applications.  相似文献   

20.
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号