首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liquid crystal elastomers (LCEs) are soft materials that undergo large anisotropic shape change in response to stimuli. Rational organization of the local director field can impart spatial control of the strain profile, enabling stretch‐based deformation capable of nearly 20 J kg?1 of output force. LCEs are increasingly being considered in end‐use applications in robotics, therapeutics, and optics. Here, a new synthetic approach is introduced to prepare LCEs composed of main chain mesogens via the cationic photopolymerization of the epoxy liquid crystal monomer (LCM). This examination details the optical, mechanical, and thermal properties of epoxide‐based LCEs as a function of spacer length (3, 6, or 11 carbons). The oxygen insensitivity of the cationic photopolymerization of these monomers makes this approach particularly attractive for implementation with emerging additive manufacturing techniques. This contribution focuses on microstructuring LCEs via 2‐photon direct laser writing (2P‐DLW). A custom heated cell facilitated 2P‐DLW of the aligned LCE epoxy resin melts to fabricate diverse geometric arrays. Enabled by the orthogonality of the reaction chemistry, hybrid and microstructured material compositions are prepared via the encapsulation of LCE epoxy micropatterns with free‐radical polymerization of acrylate‐based LCEs. The distinct thermomechanical response of the hybridized and microstructured LCE composites enables local and spatially controlled actuation.  相似文献   

2.
3.
4.
5.
6.
In this article new results on the preparation of monodisperse particles from a liquid crystalline elastomer in a microfluidic setup are presnted. For this, droplets from a liquid crystalline monomer are prepared in a microfluidic device and polymerized while they are flowing inside a microtube. The parti­cles obtained by this method possess an internal orientation, which gives them actuating properties. When they are heated into the isotropic phase of the liquid crystalline material they show a reversible change in shape whereby they change their length in one direction by almost 100%. It is shown how the variation of experimental parameters during their synthesis impacts the properties of these micro‐actuators. Influence over their primal shape, the strength of their shape changing properties, their size, and their mechanical properties is demontrated. From the systematic variation of experimental parameters a deep understanding of the complex processes taking place in a flowing droplet of a liquid crystalline material is obtainted. Additionally NMR analysis and swelling experiments on these actuating materials are provided.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号