首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase inversion is a powerful alternative process for preparing ultra‐thin separators for various secondary batteries. Unfortunately, separators prepared from phase inversion generally suffer from uneven pore size and pore size distribution, which frequently results in poor battery performance. Here, a straightforward route is demonstrated to solve the drawbacks of phase‐inversion‐based separators for Li‐ion batteries by means of directly incorporating 2D clay sheets in the skeleton of poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) with multiscale pore generation from a simple one‐step solution coating method. Additionally generated pores by the inclusion of 2D nanosheets in PVdF‐HFP skeletons, combined with the multiscale pores (several micrometers + sub‐micrometers) originally generated by means of the controlled phase inversion, can generate additional ionic transport pathways, leading to Li‐ion battery performances better than those of commercialized polyethylene separators. Moreover, the addition of extremely low contents of 2D clay sheets in PVdF‐HFP separators allows thermally stable polymer separators to be realized.  相似文献   

2.
Conventional bulky and rigid power systems are incapable of meeting flexibility and breathability requirements for wearable applications. Despite the tremendous efforts dedicated to developing various 1D energy storage devices with sufficient flexibility, challenges remain pertaining to fabrication scalability, cost, and efficiency. Here, a scalable, low‐cost, and high‐efficiency 3D printing technology is applied to fabricate a flexible all‐fiber lithium‐ion battery (LIB). Highly viscous polymer inks containing carbon nanotubes and either lithium iron phosphate (LFP) or lithium titanium oxide (LTO) are used to print LFP fiber cathodes and LTO fiber anodes, respectively. Both fiber electrodes demonstrate good flexibility and high electrochemical performance in half‐cell configurations. All‐fiber LIB can be successfully assembled by twisting the as‐printed LFP and LTO fibers together with gel polymer as the quasi‐solid electrolyte. The all‐fiber device exhibits a high specific capacity of ≈110 mAh g?1 at a current density of 50 mA g?1 and maintains a good flexibility of the fiber electrodes, which can be potentially integrated into textile fabrics for future wearable electronic applications.  相似文献   

3.
Battery separators are supposed to be electrical insulators to prevent internal short‐circuit failure between electrodes as well as having porous channels to allow ion transport. Here, as a multifunctional membrane strategy to dispel this stereotypical belief about battery separators, a new class of Janus‐faced, dual (ion/electron)‐conductive/chemically active battery separators (denoted as “Janus separators”) based on a heterolayered nanofiber mat architecture is demonstrated. The Janus separator, which is fabricated through in‐series, concurrent electrospraying/electrospinning processes, consists of an ion‐conductive/metal ion‐chelating support layer (a mat of densely packed, thiol‐functionalized silica particles spatially besieged by polyvinylpyrrolidone/polyacrylonitrile nanofibers) and a dual‐conductive top layer (a thin mat of polyetherimide nanofibers wrapped with multi‐walled carbon nanotubes). The support layer acts as a chemical trap that can capture heavy metal ions dissolved in liquid electrolytes and the top layer serves as an upper current collector for cathodes to boost the redox reaction kinetics. Notably, the unusual porous microstructure of the top layer is theoretically elucidated using molecular dynamics simulation. Benefiting from such material/structural uniqueness, the Janus separator enables significant improvements in fast‐rate charge/discharge reactions (even for high‐mass loading cathodes) and in the high‐temperature cycling performance, which lie far beyond those achievable with conventional polyethylene separators.  相似文献   

4.
Hybrid perovskites show enormous potential for display due to their tunable emission, high color purity, strong photoluminescence and electroluminescence. For display applications, full‐color and high‐resolution patterning is compulsory, however, current perovskite processing such as spin‐coating fails to meet these requirements. Here, electrohydrodynamic (EHD) printing, with the unique advantages of high‐resolution patterning and large scalability, is introduced to fabricate full‐color perovskite patterns. Perovskite inks via simple precursor mixing are prepared to in situ crystallize tunable‐ and bright‐photoluminescence perovskite arrays without adding antisolvent. Through optimizing the EHD printing process, a high‐resolution dot matrix of 5 µm is achieved. The as‐printed patterns and pictures show full color and high controllability in micrometer dimension, indicating that the EHD printing is a competitive technique for future halide perovskite‐based high‐quality display.  相似文献   

5.
Many material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond sheets (measuring up to 4 × 5 mm in planar area, and 300–600 nm in thickness) are removed from the substrate using mechanical exfoliation and then transferred to other substrates, including Si/SiO2 and graphene. The electronic properties of the resulting diamond nanosheets and their dependence on the free‐standing growth, the mechanical exfoliation and transfer processes, and ultimately on their composition are characterized. To validate this, a prototypical diamond nanosheet–graphene field effect transistor‐like (DNGfet) device is developed and its electronic transport properties are studied as a function of temperature. The resulting DNGfet device exhibits thermally activated transport (thermionic conductance) above 50 K. Below 50 K a transition to variable range hopping is observed. These findings demonstrate the first step towards a low‐temperature diamond‐based transistor.  相似文献   

6.
Solution‐processed, low cost thin films of layered semiconductors such as transition metal dichalcogenides (TMDs) are potential candidates for future printed electronics. Here, n‐type electrolyte‐gated transistors (EGTs) based on porous WS2 nanosheet networks as the semiconductor are demonstrated. The WS2 nanosheets are liquid phase exfoliated to form aqueous/surfactant stabilized inks, and deposited at low temperatures (T < 120 °C) in ambient atmosphere by airbrushing. No solvent exchange, further additives, or complicated processing steps are required. While the EGTs are primarily n‐type (electron accumulation), some hole transport is also observable. The EGTs show current modulations > 104 with low hysteresis, channel width‐normalized on‐conductances of up to 0.27 µS µm?1 and estimated electron mobilities around 0.01 cm2 V?1 s?1. In addition, the WS2 nanosheet networks exhibit relatively high volumetric capacitance values of 30 F cm?3. Charge transport within the network depends significantly on the applied lateral electric field and is thermally activated, which supports the notion that hopping between nanosheets is a major limiting factor for these networks and their future application.  相似文献   

7.
Flexible energy‐storage devices have attracted growing attention with the fast development of bendable electronic systems. Thus, the search for reliable electrodes with both high mechanical flexibility and excellent electron and lithium‐ion conductivity has become an urgent task. Carbon‐coated nanostructures of Li4Ti5O12 (LTO) have important applications in high‐performance lithium ion batteries (LIBs). However, these materials still need to be mixed with a binder and carbon black and pressed onto metal substrates or, alternatively, by be deposited onto a conductive substrate before they are assembled into batteries, which makes the batteries less flexible and have a low energy density. Herein, a simple and scalable process to fabricate LTO nanosheets with a N‐doped carbon coating is reported. This can be assembled into a film which can be used as a binder‐free and flexible electrode for LIBs that does not require any current collectors. Such a flexible electrode has a long life. More significantly, it exhibits an excellent rate capability due to the thin carbon coating and porous nanosheet structures, which produces a highly conductive pathway for electrons and fast transport channels for lithium ions.  相似文献   

8.
A new method for complex metallic architecture fabrication is presented, through synthesis and 3D‐printing of a new class of 3D‐inks into green‐body structures followed by thermochemical transformation into sintered metallic counterparts. Small and large volumes of metal‐oxide, metal, and metal compound 3D‐printable inks are synthesized through simple mixing of solvent, powder, and the biomedical elastomer, polylactic‐co‐glycolic acid (PLGA). These inks can be 3D‐printed under ambient conditions via simple extrusion at speeds upwards of 150 mm s–1 into millimeter‐ and centimeter‐scale thin, thick, high aspect ratio, hollow and enclosed, and multi‐material architectures. The resulting 3D‐printed green‐bodies can be handled immediately, are remarkably robust, and may be further manipulated prior to metallic transformation. Green‐bodies are transformed into metallic counterparts without warping or cracking through reduction and sintering in a H2 atmosphere at elevated temperatures. It is shown that primary metal and binary alloy structures can be created from inks comprised of single and mixed oxide powders, and the versatility of the process is illustrated through its extension to more than two dozen additional metal‐based materials. A potential application of this new system is briefly demonstrated through cyclic reduction and oxidation of 3D‐printed iron oxide constructs, which remain intact through numerous redox cycles.  相似文献   

9.
Printing organic semiconductor inks by means of roll‐to‐roll compatible techniques will allow a continuous, high‐volume fabrication of large‐area flexible optoelectronic devices. The gravure printing technique is set to become a widespread process for the high throughput fabrication of functional layers. The gravure printing process of a poly‐phenylvinylene derivative light‐emitting polymer dissolved in a two solvent mixture on poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is studied. The surface tensions, contact angles, viscosities, and drying times of the formulations are investigated as a function of the solvent volume fraction and polymer concentration. The properties of the ink grant a homogeneous printed layer, suitable for device fabrication, when the calculated film leveling time is shorter than a critical time, at which the film has been frozen due to loss of solvent via evaporation. The knowledge obtained from the printing process is applied to fabricate organic light‐emitting diodes (OLEDs) on flexible substrates, yielding a luminance of ≈5000 cd m?2.  相似文献   

10.
While liquid phase exfoliation can be used to produce nanosheets stabilized in polymer solutions, very little is known about the resultant nanosheet size, thickness, or monolayer content. The present study uses semiquantitative spectroscopic metrics based on extinction, Raman, and photoluminescence (PL) spectroscopy to investigate these parameters for WS2 nanosheets exfoliated in aqueous poly(vinyl alcohol) (PVA) solutions. By measuring Raman and PL simultaneously, the monolayer content can be tracked via the PL/Raman intensity ratio while varying processing conditions. The PL is found to be maximized for a stabilizing polymer concentration of 2 g L?1. In addition, the monolayer content can be controlled via the centrifugation conditions, exceeding 5% by mass in some cases. These techniques have allowed tracking the ratio of PL/Raman in a droplet of polymer‐stabilized WS2 nanosheets as the water evaporates during composite formation. No evidence of nanosheet aggregation is found under these conditions although the PL becomes dominated by trion emission as drying proceeds and the balance of doping from PVA/water changes. Finally, bulk PVA/WS2 composites are produced by freeze drying where >50% of the monolayers remain unaggregated, even at WS2 volume fractions as high as 10%.  相似文献   

11.
Liquid‐metal (LM)‐based flexible and stretchable electronics have attracted widespread interest in wearable computing, human–machine interaction, and soft robotics. However, many current examples are one‐off prototypes, whereas future implementation requires mass production. To address this critical challenge, an integrated multimaterial 3D printing process composed of direct ink writing (DIW) of sealing silicone elastomer and special LM‐silicone (LMS) inks for manufacturing high‐performance LM‐based flexible and stretchable electronics is presented. The LMS ink is a concentrated mixture of LM microdroplets and silicone elastomer and exhibits excellent printability for DIW printing. Guided by a verified theoretical model, a printing process with high resolution and high speed can be easily implemented. Although LMS is not initially conductive, it can be activated by pressing or freezing. Activated LMS possesses good conductivity and significant electrical response to strain. Owing to LMS's unique structure, LMS‐embedded flexible electronics exhibit great damage mitigation, in that no leaking occurs even when damaged. To demonstrate the flexibility of this process in fabricating LM‐based flexible electronics, multilayer soft circuits, strain sensors, and data gloves are printed and investigated. Notably, utilizing LMS's unique activating property, some functional circuits such as one‐time pressing/freezing‐on switch can be printed without any structural design.  相似文献   

12.
Silver nanoparticles (NPs) are the most widely used conductive material throughout the printed electronics space due to their high conductivity and low cost. However, when interfacing with other prominent printed materials, such as semiconducting carbon nanotubes (CNTs) in thin‐film transistors (TFTs), silver is suboptimal when compared to more expensive or less conductive materials. Consequently, there would be significant value to improving the interface of printed silver to CNT films. In this work, the impact of nanostructure morphology on the electrical properties of printed silver and nanotube junctions in CNT‐TFTs is investigated. Three distinct silver morphologies (NPs, nanoflakes – NFs, and nanowires – NWs) are explored with top‐ and bottom‐contact configurations for each. The NF morphology in a top‐contact configuration is found to yield the best electrical interface to CNTs, resulting in an average contact resistance of 1.2 MΩ ? µm. Beyond electrical performance, several trade‐offs in morphology selection are revealed, including print resolution and process temperature. While NF inks produce the best interfaces, NP inks produce the smallest features, and NW inks are compatible with low processing temperatures (<80 °C). These results outline the trade‐offs between silver contact morphologies in CNT‐TFTs and show that contact morphology selection can be tailored for specific applications.  相似文献   

13.
For the solution processing of organic photovoltaics on an industrial scale, the exclusion of halogenated solvents is a necessity. However, the limited solubility of most semiconducting polymer/fullerene blends in non-halogenated solvents results in ink formulations with low viscosities which poses limitations to the use of roll-to-roll compatible deposition processes, such as inkjet printing. We propose to add polystyrene as a rheological modifier to increase the viscosity of bulk heterojunction (BHJ) non-halogenated inks. The printing and performance of P3HT/PCBM photoactive layer inks are characterized as a function of polystyrene concentration and three different molecular weights. Addition of 1 wt% polystyrene provided a near two-fold gain in viscosity, with the largest viscosity gains coming from the polymer with the highest molecular weight. However, this coincided with greater viscoelastic behavior, which reduced the jetting performance of the inks. Differences in solvent compatibility of the polystyrene/P3HT/PCBM ternary blend resulted in phase separation upon layer drying, whereby polystyrene segregated to the layer-air interface to form an isolated domain or network like topology. Nevertheless, a 1.7-fold increase in dynamic viscosity was obtained for devices with printed BHJ layers containing polystyrene at the expense of a 20% reduction in OPV performance. The improved viscosity and good printing behavior achieved with small additions of polystyrene demonstrates its potential to overcome the limited viscosity resulting from typical non-halogenated ink formulations for semiconducting polymers. These results offer a step forward to the industrialization of inkjet printing as an effective deposition technique for functional layers of organic electronics.  相似文献   

14.
Recently, a printable power source that can be implemented on demand in integrated circuitries has gained tremendous attention to facilitate next‐generation, form‐factor free, miniaturized electronic systems. Among various energy storage units, a solid‐state micro‐supercapacitor with in‐plane device architecture has been recognized as a viable candidate with characteristic advantages of long cycle life‐time, high frequency response, and fast charge/discharge rate. However, to date, high performance, all‐printed micro‐supercapacitors have rarely been reported owing to an absence of printable current collector materials that can sustain high voltage conditions. In this study, a multidimensional printable particle mixture comprising Ni nanoparticles, Ni flakes, and a photoreactive polymer, polyvinylpyrrolidone is proposed. The highly conductive, printed metallic current collector is generated with a conductive surface passivation layer in a timescale of 10?3 s by flash‐light sintering process. It is revealed that the resulting metallic current collector is stable at a voltage as high as 3 V in the carbon electrode‐based device, enabling the fabrication of an all‐printed solid‐state micro‐supercapacitor with an areal energy density of 79–23 mJ cm?2 at an areal power density of 0.4–12.8 mW cm?2. Arbitrarily designed device circuits can be generated on demand simply by using a digitally programmable printing process, without incorporation of additional interconnection lines.  相似文献   

15.
Hard carbon (HC) is a promising anode material for sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), but the volume change during the insertion/extraction of Na+ or K+ limits the cycle life, especially for PIBs due to the large ion size of K+. Moreover, the conventional anodes fabricated through the coating method cannot satisfy the requirement of flexible devices. Here, it is shown that 2D carbide flakes of Ti3C2Tx MXene can be used as multifunctional conductive binders for flexible HC electrodes. The use of MXene nanosheets eliminates the need for all the electrochemically inactive components in the conventional polyvinylidene fluoride–bonded HC electrode, including polymer binders, conductive additives, and current collectors. In MXene‐bonded HC electrodes, conductive and hydrophilic MXene 2D nanosheets construct a 3D network, which can effectively stabilize the electrode structure and accommodate the volume expansion of HC during the charge/discharge process, leading to an enhanced electrode capacity and excellent cycle performance as anodes for both SIBs and PIBs. Benefiting from the 3D conductive network, the MXene‐bonded HC film electrodes also present improved rate capability, indicating MXene is a very promising multifunctional binder for next‐generation flexible secondary rechargeable batteries.  相似文献   

16.
A composite material made of graphene nanoribbons and iron oxide nanoparticles provides a remarkable route to lithium‐ion battery anode with high specific capacity and cycle stability. At a rate of 100 mA/g, the material exhibits a high discharge capacity of ~910 mAh/g after 134 cycles, which is >90% of the theoretical li‐ion storage capacity of iron oxide. Carbon black, carbon nanotubes, and graphene flakes have been employed by researchers to achieve conductivity and stability in lithium‐ion electrode materials. Herein, the use of graphene nanoribbons as a conductive platform on which iron oxide nanoparticles are formed combines the advantages of long carbon nanotubes and flat graphene surfaces. The high capacity over prolonged cycling achieved is due to the synergy between an electrically percolating networks of conductive graphene nanoribbons and the high lithium‐ion storage capability of iron oxide nanoparticles.  相似文献   

17.
Transition metal dichalcogenides (TMDs) 2D nanomaterials' integration into the industry has been hampered by the ability to mass produce nanosheets of designed sizes. Large‐scale exfoliation is possible with liquid‐phase exfoliation, but precise subsequent isolation of a specified size dimension has yet to be realized. Herein, a precise and efficient method for both size fractionation and nanosheet retrieval is demonstrated using electrophoretic isolation of MoS2 nanosheets in low melting agarose. This can be applied to find out the relative size distribution and sizes within a sample of MoS2. Fractionation can be estimated visually by the relative spread of sizes based on their banding within the agarose. The additional degrees of freedom conferred by the agarose allow for more precise design and control over the size selection process. This serves as a quick and easy method of discerning and isolating the desired size range of MoS2 for further downstream applications in a single step. Nanosheets separated by the procedure retain their structural properties and display size dependency shown empirically and theoretically. This technique is versatile and can be varied according to the needs. It may truly bring large‐scale isolation that much needed step closer to industrial scale production.  相似文献   

18.
A mechanically robust, ultraelastic foam with controlled multiscale architectures and tunable mechanical/conductive performance is fabricated via 3D printing. Hierarchical porosity, including both macro‐ and microscaled pores, are produced by the combination of direct ink writing (DIW), acid etching, and phase inversion. The thixotropic inks in DIW are formulated by a simple one‐pot process to disperse duo nanoparticles (nanoclay and silica nanoparticles) in a polyurethane suspension. The resulting lightweight foam exhibits tailorable mechanical strength, unprecedented elasticity (standing over 1000 compression cycles), and remarkable robustness (rapidly and fully recover after a load more than 20 000 times of its own weight). Surface coating of carbon nanotubes yields a conductive elastic foam that can be used as piezoresistivity sensor with high sensitivity. For the first time, this strategy achieves 3D printing of elastic foam with controlled multilevel 3D structures and mechanical/conductive properties. Moreover, the facile ink preparation method can be utilized to fabricate foams of various materials with desirable performance via 3D printing.  相似文献   

19.
The synthesis and preparation of a new type of graphene composite material suitable for spin‐coating into conductive, transparent, and flexible thin film electrodes in ambient conditions is reported here for the first time. Solution‐processible graphene with diameter up to 50 μm is synthesized by surfactant‐assisted exfoliation of graphite oxide and in situ chemical reduction in a large quantity. Spin‐coating the mixing solution of surfactant‐functionalized graphene and PEDOT:PSS yields the graphene composite electrode (GCE) without the need for high temperature annealing, chemical vapor deposition, or any additional transfer‐printing process. The conductivity and transparency of GCE are at the same level as those of an indium tin oxide (ITO) electrode. Importantly, it exhibits high stability (both mechanical and electrical) in bending tests of at least 1000 cycles. The performance of organic light‐emitting diodes based on a GCE anode is comparable, if not superior, to that of OLEDs made with an ITO anode.  相似文献   

20.
Novel nacre‐mimic bio‐nanocomposites, such as graphene‐based laminates, are pushing the boundaries of strength and toughness as flexible engineering materials. Translating these material advances to functional flexible electronics requires methods for generating print‐scalable microcircuits (conductive elements surrounded by dielectric) into these strong, tough, lightweight bio‐nanocomposites. Here, a new paradigm for printing flexible electronics by employing facile, eco‐friendly seriography to confine the reduction of graphene oxide biopapers reinforced by silk interlayers is presented. Well‐defined, micropatterned regions on the biopaper are chemically reduced, generating a 106 increase in conductivity (up to 104 S m?1). Flexible, robust graphene‐silk circuits are showcased in diverse applications such as resistive moisture sensors and capacitive proximity sensors. Unlike conductive (i.e., graphene‐ or Ag nanoparticle‐loaded) inks printed onto substrates, seriography‐guided reduction does not create mechanically weak interfaces between dissimilar materials and does not require the judicious formation of ink. The unimpaired functionality of printed‐in graphene‐silk microcircuits after thousands of punitive folding cycles and chemical attack by harsh solvents is demonstrated. This novel approach provides a low‐cost, portable solution for printing micrometer‐scale conductive features uniformly across large areas (>hundreds of cm2) in layered composites for applications including wearable health monitors, electronic skin, rollable antennas, and conformable displays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号