首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Rapid and efficient conversion of electrical signals to optical signals is needed in telecommunications and data network interconnection. The linear electro‐optic (EO) effect in noncentrosymmetric materials offers a pathway to such conversion. Conventional inorganic EO materials make on‐chip integration challenging, while organic nonlinear molecules suffer from thermodynamic molecular disordering that decreases the EO coefficient of the material. It has been posited that hybrid metal halide perovskites could potentially combine the advantages of inorganic materials (stable crystal orientation) with those of organic materials (solution processing). Here, layered metal halide perovskites are reported and investigated for in‐plane birefringence and linear electro‐optic response. Phenylmethylammonium lead chloride (PMA2PbCl4) crystals are grown that exhibit a noncentrosymmetric space group. Birefringence measurements and Raman spectroscopy confirm optical and structural anisotropy in the material. By applying an electric field on the crystal surface, the linear EO effect in PMA2PbCl4 is reported and its EO coefficient is determined to be 1.40 pm V?1. This is the first demonstration of this effect in hybrid metal halide perovskites, materials that feature both highly ordered crystalline structures and solution processability. The in‐plane birefringence and electro‐optic response reveal that layered perovskite crystals could be further explored for potential applications in polarizing optics and EO modulation.  相似文献   

4.
5.
6.
7.
8.
Improving electro‐optic properties is essential for fabricating high‐quality liquid crystal displays. Herein, by doping amorphous Mn3O4 octahedral nanocages (a‐Mn3O4 ONCs) into a nematic liquid crystal (NLC) matrix E7, outstanding electro‐optic properties of the blend are successfully obtained. At a doping concentration of 0.03 wt%, the maximum decreases of threshold voltage (Vth) and saturation voltage (Vsat) are 34% and 31%, respectively, and the increase of contrast (Con) is 160%. This remarkable electro‐optic activity can be attributed to high‐efficiency charge transfer within the a‐Mn3O4 ONCs NLC system, caused by metastable electronic states of a‐Mn3O4 ONCs. To the best of our knowledge, such remarkable decreased electro‐optic activity is observed for the first time from doping amorphous semiconductors, which could provide a new pathway to develop excellent energy‐saving amorphous materials and improve their potential applications in electro‐optical devices.  相似文献   

9.
10.
11.
12.
13.
As part of the ongoing research within the field of computational analysis for the coupled electro‐magneto‐mechanical response of smart materials, the problem of linearised electrostriction is revisited and analysed for the first time using the framework of hp‐finite elements. The governing equations modelling the physics of the dielectric are suitably modified by introducing a new total Cauchy stress tensor (A. Dorfmann and R.W. Ogden. Nonlinear electroelasticity. Acta Mechanica, 174:167–183, 2005), which includes the electrostrictive effect and a staggered partitioned scheme for the numerical solution of the coupling phenomena. With the purpose of benchmarking numerical results, the problem of an infinite electrostrictive plate with a circular/elliptical dielectric insert is revisited. The presented analytical solution is based on the theoretical framework for two‐dimensional electrostriction proposed by Knops (R.J. Knops. Two‐dimensional electrostriction. Quarterly Journal of Mechanics and Applied Mathematics, 16:377–388, 1963) and uses classical techniques of complex variable analysis. Our presentation, to the best of our knowledge, provides the first correct closed form expression for the solution to the infinite electrostrictive plate with a circular/elliptical dielectric insert, correcting the errors made in previous presentations of this problem. We use this analytical solution to assess the accuracy, efficiency and robustness of the hp‐formulation in the case of nearly incompressible electrostrictive materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Currently, the limitations of conventional methods for fabricating metamaterials composed of well‐aligned nanoscale inclusions either lack the necessary freedom to tune the structural geometry or are difficult for large‐area synthesis. In this Communication, the authors propose a fabrication route to create well‐ordered silver nano forest/ceramic composite single‐layer or multi‐layer vertically stacked structures, as a distinctive approach to make large‐area nanoscale metamaterials. To take advantage of direct growth, the authors fabricate single‐layer nanocomposite films with a well‐defined sub‐5 nm interwire gap and an average nanowire diameter of ≈3 nm. Further, artificially constructed multilayer metamaterial films are easily fabricated by vertical integration of different single‐layer metamaterial films. Based upon the thermodynamics as well as thin film growth dynamics theory, the growth mechanism is presented to elucidate the formation of such structure. Intriguing steady and transient optical properties in these assemblies are demonstrated, owing to their nanoscale structural anisotropy. The studies suggest that the self‐organized nanocomposites provide an extensible material platform to manipulate optical response in the region of sub‐5 nm scale.  相似文献   

15.
Cell printing has gained extensive attentions for the controlled fabrication of living cellular constructs in vitro. Various cell printing techniques are now being explored and developed for improved cell viability and printing resolution. Here an electro‐hydrodynamic cell printing strategy is developed with microscale resolution (<100 µm) and high cellular viability (>95%). Unlike the existing electro‐hydrodynamic cell jetting or printing explorations, insulating substrate is used to replace conventional semiconductive substrate as the collecting surface which significantly reduces the electrical current in the electro‐hydrodynamic printing process from milliamperes (>0.5 mA) to microamperes (<10 µA). Additionally, the nozzle‐to‐collector distance is fixed as small as 100 µm for better control over filament deposition. These features ensure high cellular viability and normal postproliferative capability of the electro‐hydrodynamically printed cells. The smallest width of the electro‐hydrodynamically printed hydrogel filament is 82.4 ± 14.3 µm by optimizing process parameters. Multiple hydrogels or multilayer cell‐laden constructs can be flexibly printed under cell‐friendly conditions. The printed cells in multilayer hydrogels kept alive and gradually spread during 7‐days culture in vitro. This exploration offers a novel and promising cell printing strategy which might benefit future biomedical innovations such as microscale tissue engineering, organ‐on‐a‐chip systems, and nanomedicine.  相似文献   

16.
The use of abundant solar energy for regeneration and desalination of water is a promising strategy to address the challenge of a global shortage of clean water. Progress has been made to develop photothermal materials to improve the solar steam generation performance. However, the mass production rate of water is still low. Herein, by a rational combination of photo‐electro‐thermal effect on an all‐graphene hybrid architecture, solar energy can not only be absorbed fully and transferred into heat, but also converted into electric power to further heat up the graphene skeleton frame for a much enhanced generation of water vapor. As a result, the unique graphene evaporator reaches a record high water production rate of 2.01–2.61 kg m?2 h?1 under solar illumination of 1 kW m?2 even without system optimization. Several square meters of the graphene evaporators will provide a daily water supply that is enough for tens of people. The combination of photo‐electro‐thermal effect on graphene materials offers a new strategy to build a fast and scalable solar steam generation system, which makes an important step towards a solution for the scarcity of clean water.  相似文献   

17.
18.
19.
20.
Inspired by the great success of fiber optics in ultrafast data transmission, photonic computing is being extensively studied as an alternative to replace or hybridize electronic computers, which are reaching speed and bandwidth limitations. Mimicking and implementing basic computing elements on photonic devices is a first and essential step toward all‐optical computers. Here, an optical pulse‐width modulation (PWM) switching of phase‐change materials on an integrated waveguide is developed, which allows practical implementation of photonic memories and logic devices. It is established that PWM with low peak power is very effective for recrystallization of phase‐change materials, in terms of both energy efficiency and process control. Using this understanding, multilevel photonic memories with complete random accessibility are then implemented. Finally, programmable optical logic devices are demonstrated conceptually and experimentally, with logic “OR” and “NAND” achieved on just a single integrated photonic phase‐change cell. This study provides a practical and elegant technique to optically program photonic phase‐change devices for computing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号