首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
邹曼 《中国油脂》2021,46(7):14-19
以95%乙醇为萃取剂,采用溶剂法对高酸值米糠原油进行同步脱酸脱蜡,以脱酸率、脱蜡率为指标,通过单因素试验和正交试验优化高酸值米糠油同步脱酸脱蜡工艺条件。结果表明:高酸值米糠油脱酸脱蜡最佳工艺条件为卵磷脂添加量0.15%(以95%乙醇质量计)、萃取时间40 min、萃取温度60 ℃、料液比1∶ 2.5、萃取次数4次,在最佳工艺条件下米糠油的脱酸率和脱蜡率分别为99.45%和99.86%,精炼得率为65.67%,谷维素、植物甾醇和维生素E保留率分别为87.88%、9764%和95.15%。  相似文献   

2.
研究了无溶剂体系中,两种固定化脂肪酶(Lipozyme RMIM和Lipozyme 435)对高酸值米糠油的酶法酯化脱酸效果。结果表明,脂肪酶Lipozyme 435脱酸效果较脂肪酶Lipozyme RMIM更好。在单因素实验的基础上,运用正交实验对高酸值米糠油酶法酯化脱酸工艺条件进行优化,得到最优工艺条件为:反应温度70℃,脂肪酶Lipozyme 435添加量为米糠油质量的3%,反应时间10 h,甘油添加量为理论甘油质量的250%。在最优工艺条件下,米糠油酸值(KOH)从39.81 mg/g降到2.06 mg/g,脱酸率达到94.83%,谷维素保留率为92.44%、VE保留率为77.94%、植物甾醇保留率为82.34%。  相似文献   

3.
以菜籽油为原料,模拟出高酸值植物油,分别采用两次碱炼脱酸法、乙醇溶剂多次萃取法和分子蒸馏-碱炼脱酸法进行脱酸,探讨模拟高酸值菜籽油碱炼最大脱酸程度及该脱酸程度下最佳脱酸方案,最后应用于高酸值薏米米糠油进行验证。研究结果表明,模拟高酸值菜籽油碱炼脱酸的最大脱酸程度为60 mg KOH/g; 3种方法经优化后,两次碱炼脱酸后精炼油酸值为0. 111 mg KOH/g,总得率为34. 82%;乙醇萃取脱酸后精炼油酸值为3. 158 mg KOH/g,总得率为47. 77%;分子蒸馏-碱炼脱酸后精炼油酸值为0. 280 mg KOH/g,总得率为57. 45%。最佳脱酸方案为分子蒸馏-碱炼脱酸,其工艺为:在蒸发器温度165℃、内冷器温度30℃、转速365 r/min条件下分子蒸馏后,采用60 g/L的NaOH溶液在0℃下脱酸,100 g/L的Na Cl溶液洗脱皂脚后分离得最终脱酸油。高酸值薏米米糠油经最佳工艺脱酸后,其酸值由63. 41 mg KOH/g降至0. 441 mg KOH/g,总得率为57. 05%。实际体系和模拟体系脱酸结果一致性较好,说明模拟所得最佳脱酸工艺具有可行性。  相似文献   

4.
以脱胶米糠油为原料,研究了醇萃取脱酸以及醇萃取脱酸后再经过碱炼或自制吸附剂吸附脱酸对米糠油中功能因子含量的影响。结果表明:甲醇和95%乙醇萃取脱酸均能较好地脱除游离脂肪酸(FFA),但从功能因子损失和米糠油得率来看,甲醇萃取脱酸效果明显好于95%乙醇,甲醇4次萃取脱酸后米糠油得率为63.95%,FFA脱除率为92.57%,谷维素、维生素E、植物甾醇的损失率分别为8.56%、32.86%、20.28%;对甲醇4次萃取脱酸后的米糠油采用质量分数为8.07%的碱液(Na OH溶液)进行碱炼脱酸时,其酸值(KOH)可降至1 mg/g以内,功能因子损失相对较少;自制吸附剂对甲醇4次萃取脱酸后的米糠油吸附脱酸可降低酸值,并且功能因子基本无损失。  相似文献   

5.
高酸值非粮植物油酯化降酸工艺研究   总被引:1,自引:1,他引:0  
对甲苯磺酸作为酸催化剂,催化高酸值非粮植物油与甲醇进行预酯化反应。研究油醇摩尔比、催化剂用量、反应时间和反应温度对酯化降酸的影响,优化了工艺条件。结果表明,在油醇摩尔比1∶30、催化剂用量8 mg、70oC条件下反应50 min,高酸值麻疯树油、千金子油预酯化率分别为96.0%、96.2%,表明原料降酸效果较好,可满足后期生物柴油的制备。  相似文献   

6.
以高酸值花椒籽油为原料,选择醇萃取-碱炼混合法精炼花椒籽油。以酸值、脱酸率或精炼率为指标,采用单因素实验和正交实验分别考察了初次脱酸和二次脱酸工艺中各参数对花椒籽油脱酸效果的影响。实验结果表明,在初次脱酸实验中95%乙醇与花椒籽油的液料比为2.5∶1m L/g,二次脱酸实验中乙醇浓度为65%、氢氧化钠浓度为1.4%、乙醇-Na OH溶液与花椒籽油的液料比为2∶1m L/g、反应温度为60℃的条件下,酸值为76.60mg KOH/g的花椒籽油可降低到0.38mg KOH/g。  相似文献   

7.
高酸值生物柴油原料降酸的研究   总被引:1,自引:0,他引:1  
以油酸为原料模拟高酸值油脂进行降酸研究,提出了高酸值原料经精馏分水-连续酯化进行降酸的方法和工艺流程,并对工艺参数进行了优化。研究表明,甲醇和油酸的物质量之比为2 1∶,对甲苯磺酸用量为油酸质量的4%,酯化反应温度95℃左右,甲醇精馏温度65℃左右,能使油酸的转化率在反应120 min时达到99.13%。该技术具有催化剂用量少,反应连续,反应时间短等优点。  相似文献   

8.
光皮树油乙醇萃取法脱酸比高温蒸汽法或碱炼脱酸,更有利于提高油脂的质量和降低炼耗。但在常规条件下处理,需要多次处理,耗时长。本文采用超声波辅助法对高酸值的光皮树油进行脱酸处理。结果表明:影响脱酸效果因素及其重要性大小顺序是,萃取次数〉超声处理时间〉萃取剂浓度。在萃取4次,超声处理2min,无水乙醇为萃取剂的最佳工艺条件下,高酸值的光皮树油经过脱酸工艺,酸值可以降到2.019(KOH)/(mg/g),满足食用油的质量标准。  相似文献   

9.
四氯化锡对高酸值油脂酯化催化作用的实验研究   总被引:13,自引:2,他引:13  
利用高酸值油脂生产生物柴油是现今研究的热点.以高酸值油脂为原料,采用四氯化锡作为催化剂进行酯化反应.通过实验较系统地研究了催化剂加入量、甲醇比例、反应时间等因素对高酸值油脂酯化反应的影响.结果表明,四氯化锡对高酸值油脂酯化具有很强的催化活性,催化剂可以回收重新使用;通过两步酯化,酯化率可达97%以上.  相似文献   

10.
《粮食与油脂》2016,(9):42-46
在对催化剂的种类、反应时间、反应温度、催化剂添加量和甘油添加量5个影响因素考察的基础上,根据中心组合试验原理设计了试验,并以响应面法优化高酸值米糠油的脱酸工艺。结果表明,酯化脱酸的最佳方案为反应时间4 h、反应温度215℃、甘油添加量为理论甘油的115%、催化剂添加量为0.3%,在此条件下的理论脱酸率可达90.95%,实际脱酸率可达91.81%,其中谷维素保留率为30.23%。以上结果表明,该工艺条件可靠,具有可行性和参考价值。  相似文献   

11.
皱皮木瓜籽油提取工艺优化及其理化性质和抗氧化活性   总被引:1,自引:0,他引:1  
以皱皮木瓜籽为原料,研究溶剂浸提法提取皱皮木瓜籽油的最佳工艺。在单因素试验的基础上,进行正交试验优化分析,确定皱皮木瓜籽油的最佳提取工艺条件为:料液比1∶4(g/mL)、提取温度60℃、提取时间150 min。在该条件下皱皮木瓜籽油的提取率为28.48%。皱皮木瓜籽油的酸值和过氧化值等指标达到了食用油脂的标准。将皱皮木瓜籽油甲酯化后,利用气相色谱-质谱联用法鉴定出12种脂肪酸,主要为油酸(42.69%)、亚油酸(32.46%)、棕榈酸(12.92%)、硬脂酸(4.82%)、花生酸(3.27%),不饱和脂肪酸含量达77.42%。通过测定清除1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基和羟自由基能力来评价皱皮木瓜籽油的抗氧化活性,结果表明对DPPH自由基和羟自由基的IC50分别为8.51、0.396 mg/mL。  相似文献   

12.
Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.  相似文献   

13.
目的 优化葵花籽过氧化值和酸价检测的油脂制备工艺。方法 借助超声优化油脂制备工艺,以油脂得率为评价指标,在单因素实验的基础上,采用Plackett-Burman设计和Box-Behnken Design响应面法对影响因素进行优化,然后用优化后工艺与国标法对6种葵花籽进行油脂提取并比较分析其油脂得率、过氧化值和酸价,评价优化方法可行性。结果 优化的超声最佳提取工艺为粉碎目数70目、料液比1:4 (g:mL)、浸提时间2h、超声功率312 W、超声时间37 min,经验证此优化工艺提取的油脂得率比国标法提高19%~25%,油脂制备时间由12h以上缩短至2.5h,缩短了80%的制备时间,提取效率更高,且测得的过氧化值结果更低。结论 优化的超声工艺提取油脂更多且耗时短,不仅满足了检测用油量的需求,还降低了长时间油脂提取的氧化风险,检测结果更准确,更能真实反映葵花籽的品质,经验证此方法准确可行,可用于葵花籽过氧化值和酸价检测的油脂提取制备。  相似文献   

14.
为开发优质果胶资源,利用超声辅助柠檬酸法从百香果果皮中提取高酯果胶,采用单因素实验探讨了料液比、pH、提取时间、超声功率对果胶得率的影响,应用正交试验确定果胶的最优提取工艺,并对其理化性质进行比较分析。结果表明,提取过程中各因素对果胶得率的影响大小为:提取时间 > 料液比 > pH > 超声功率;最佳提取工艺为:料液比1:40(g/mL)、pH2.00、提取时间60 min、超声功率为180 W。该条件下百香果果皮果胶得率为13.07%。经理化性质测定,果胶干燥失重为5.92%、灰分含量为4.18%、酸不溶物含量为0.27%、pH为3.55、酯化度为72.32%,属于高酯化果胶。本研究结果可为百香果果皮果胶的工业化生产提供技术支撑。  相似文献   

15.
采用响应面法研究了提取温度、pH、提取时间和液料比对豆腐柴果胶得率和酯化度(DE)的影响,并对最佳提取条件下的果胶进行了微观结构和加工特性的研究。最佳提取条件为:提取温度90 ℃,pH6,提取时间67 min,液料比24:1 mL/g,果胶得率为17.8%。在最佳条件下获得的果胶为低甲氧基果胶(DE=43.1%),半乳糖醛酸含量为65.8%,具有果胶多糖典型的红外光谱图,扫描电镜显示果胶呈多褶皱的团聚状。其持水力和持油力分别为6.52和6.03 g/g,在2%和4%时的起泡能力分别为52.7%和72.4%,30 min后的泡沫稳定性为18.5%和44.6%。综上所述,豆腐柴叶为低甲氧基酯果胶的良好来源,且具有作为乳化剂、稳定剂、起泡剂用于高脂食品体系感官品质改善的潜在应用价值。  相似文献   

16.
响应面法优化火麻仁油冷榨提取工艺   总被引:2,自引:0,他引:2  
目的:得到高品质、纯天然火麻仁油及保留饼粕中蛋白质的天然生物活性。方法:采用冷榨法提取火麻仁油,在单因素试验基础上,采用响应面法对提取工艺参数进行优化。建立入榨水分含量、入榨温度、压榨压力、压榨时间与火麻仁油提取率之间的数学模型。采用气相色谱法测定、面积归一化法分析所提取火麻仁油脂肪酸组成及含量。结果:通过典型性分析得出最优工艺条件为入榨水分含量4.5%、入榨温度59℃、压榨压力40MPa、压榨时间36min,在此最佳工艺条件下火麻仁油提取率可达82.74%。脂肪酸测定表明火麻仁冷榨油富含亚油酸、亚麻酸、油酸、花生四烯酸等不饱和脂肪酸,其总含量高达89.80%。结论:将响应面分析法应用于冷榨提取火麻仁油工艺条件优化,获得良好效果。火麻仁冷榨油不饱和脂肪酸含量高,是一种具有高营养保健价值的功能性油脂。  相似文献   

17.
以沧州沿海地区盐地翅碱蓬籽为原料,以石油醚(60~90℃)为提取剂,以提油率为指标,采用浸出法提取翅碱蓬籽油。利用正交实验法和响应面法对颗粒度、液料比、提取时间进行优化,并对两种方法进行了双样本T检验,结果表明两种实验方法的最佳工艺条件下提油率差异不显著。正交实验优化的最佳工艺条件为:颗粒度100目、液料比20:1(mL:g)、提取时间150 min,此时提油率平均达到25.13%。响应面法优化后的最佳工艺参数为:颗粒度100目、液料比21:1(mL:g)、提取时间128 min,此时提油率平均可达到25.12%。对响应面最佳条件下得到的翅碱蓬籽油进行理化性质分析,检测结果为:皂化值199.09 mg KOH/g,碘值141.58 g I/100 g,酸值2.00 mg KOH/g,过氧化值2.53 mmol/kg,均符合食用油标准,具备开发为高级保健食用油的条件。研究结果为翅碱蓬的进一步开发利用提供了理论依据。  相似文献   

18.
利用地沟油开发生物柴油——固酸、固碱两步非均相催化   总被引:7,自引:0,他引:7  
根据地沟油酸值高的特点,采用固酸、固碱两步非均相催化法开发生物柴油。此法避免了均相酸法耐酸设备价格高,反应时间长,酯化率低,有废水等缺点;克服了均相碱催化酯交换反应对高酸值地沟油易皂化,得率低,产生大量废水等弊病;同时,也克服了两步均相法产生大量废水,影响环境的不足。在最佳试验条件下,酯化率在96%以上。  相似文献   

19.
In this study, the effect of different sonication times (10, 20, and 30 min) on oil yields, extracted by using soxhlet together with preultrasonic treatment, and fatty acid composition of seed/kernels were investigated. The sonication of samples for 30 min caused the highest increase in oil yield of hazelnut (from 62.38 to 63.60%) and black cumin (from 27.90 to 31.80%) (p < .05). The appropriate sonication time for oil yield of peanut was 10 min, with the range of 51.50%. After sonication process, the dominant fatty acid contents of all samples showed a change and the major decrease in oleic acid amount of hazelnut (from 75.20 to 74.27%) and peanut oils (from 57.10 to 56.69%) and linoleic acid content of black cumin (from 58.38 to 57.50%) were determined when samples sonicated for 30 min (p < .05). Sonication process caused a decreasing in black cumin oil, and the reduction increased with sonication time.

Practical applications

Ultrasound‐assisted extraction method can be used as an alternative extraction method for conventional extraction. Ultrasonic‐assisted extraction has some advantages as being efficiency, speed and using low temperatures, which prevents thermal damage. The ultrasound process enables to greater influence of solvent into the sample matrix and increases mass transfer. Thereby, the higher extract yield, almost 23%, provided with ultrasonic‐assisted extraction in comparison to soxhlet extraction.  相似文献   

20.
以仿栗籽为萃取原料,采用响应面法(RSM)优化仿栗籽油的超临界CO2 萃取工艺条件,在单因素试验基础上,设定CO2 流量为25kg/h、原料粉碎度为40 目,然后选取萃取压力、萃取温度、分离温度和萃取时间为影响因子,以仿栗籽油得率为响应值,应用Box-behnken 中心组合试验设计建立数学模型,进行响应面分析。结果表明,超临界CO2 萃取仿栗籽油的优化工艺条件:萃取压力31MPa、萃取温度47℃、分离温度34℃、萃取时间72min,在此优化条件下,仿栗籽油得率为48.57%。对仿栗籽油的脂肪酸组成进行GC-MS 分析,结果表明,仿栗籽油中富含不饱和脂肪酸,其中油酸和亚油酸含量分别为35.17% 和19.76%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号