首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HfC改性C/C复合材料整体喉衬的烧蚀性能研究   总被引:4,自引:1,他引:3  
采用热梯度化学气相沉积工艺制备了碳化铪改性和未改性整体炭毡增强的炭/炭(C/C)复合材料整体喉衬, 采用小型固体火箭发动机试车台装置(平均工作压强为7MPa)测定了它们的烧蚀性能. 结合扫描电镜(SEM)和能谱(EDS)分析, 讨论了碳化铪改性对C/C复合材料整体喉衬烧蚀行为的影响. 结果表明:与未改性的C/C复合材料整体喉衬相比, 碳化铪改性C/C复合材料整体喉衬的烧蚀过程中存在一个线烧蚀率恒定的稳定烧蚀阶段, 且其线烧蚀率减小了34%, 质量烧蚀率减小了13%.  相似文献   

2.
C/C复合材料烧蚀性能的研究进展   总被引:2,自引:0,他引:2  
张红波  尹健  熊翔 《材料导报》2005,19(7):97-99,103
C/C复合材料是一种良好的抗烧蚀和耐高温热结构材料,广泛应用于航天航空等领域.综述了C/C复合材料烧蚀性能的测试方法、烧蚀机理、烧蚀模型以及抗烧蚀的研究状况.  相似文献   

3.
含钽(Ta)C/C复合材料烧蚀分析   总被引:10,自引:0,他引:10       下载免费PDF全文
根据TaC和C/C复合材料的物理化学性质及烧蚀环境推测C/TaC/C复合材料的烧蚀机理,并对其抗侵蚀机理及剥蚀进行了预测分析,在分析C/TaC/C复合材料烧蚀机理的基础上建立其烧蚀模型。根据Darcy定律确定TaC液体流动的速度,并在此基础上利用流体动力学和质量守恒定律等推导出C/TaC/C复合材料质量烧蚀率公式。  相似文献   

4.
碳化铪含量对C/C复合材料喉衬烧蚀性能的影响   总被引:1,自引:0,他引:1  
将炭毡浸渍于饱和的HfOCl2.8H2O乙醇溶液中,经600℃热处理形成HfO2/C复合材料,然后采用热梯度化学气相沉积工艺在2100℃进行致密化和石墨化处理使HfO2转化为HfC而得到碳化铪(HfC)改性、整体炭毡增强的炭/炭(HfC-C/C)复合材料整体喉衬。利用小型固体火箭发动机试车台装置,在7MPa、3200℃烧蚀3s以测定HfC含量对喉衬烧蚀性能的影响。结果表明,HfC质量分数为5.7%的HfC-C/C喉衬线烧蚀率减小了25.2%;HfC质量分数为8.7%的HfC-C/C喉衬线烧蚀率减小了49.6%。同时,当HfC质量分数为5.7%时,HfC-C/C喉衬出现了以恒定线烧蚀率为特征的稳态烧蚀阶段,且该阶段的持续时间随HfC含量的增加而增加。  相似文献   

5.
C/C复合材料烧蚀性能分析   总被引:36,自引:6,他引:30       下载免费PDF全文
阐述了C/C复合材料性能的优越性及烧蚀机理,并建立了剥蚀机理的物理模型;讨论了环境影响和表面粗糙度的生死循环,并且分析了C/C的机械剥蚀和热化学烧蚀,得到了一些启示。这为热防护领域做了些有益的探讨。   相似文献   

6.
采用涂刷法和浆料浸渍法在(C/C)/SiC复合材料基础上制备了(C/C)/ZrB2-SiC复合材料,采用微观分析和氧-乙炔烧蚀试验,并借助SEM、EDS等手段,研究三种材料的微观结构、抗烧蚀性能和抗烧蚀机制。结果表明:制备的(C/C)/ZrB2-SiC复合材料的抗烧蚀性能优于(C/C)/SiC复合材料,相比(C/C)/SiC复合材料,涂刷法制备的(C/C)/ZrB2-SiC复合材料600 s和1 000 s线烧蚀率下降33.3%和15.4%,质量烧蚀率下降51.5%和25.5%;浆料浸渍法制备的(C/C)/ZrB2-SiC复合材料600 s和1 000 s线烧蚀率下降20%和28.8%,质量烧蚀率下降42.4%和53.2%,其在高温阶段形成的ZrO2-SiO2玻璃态熔融层起到了抗氧化冲刷的作用,大幅提高其抗烧蚀性能。三种材料的烧蚀机制是热化学烧蚀、热物理烧蚀和机械剥蚀的综合作用。   相似文献   

7.
燃气发生器条件下穿刺C/C复合材料喷管的烧蚀性能研究   总被引:1,自引:0,他引:1  
研究了穿刺C/C复合材料喷管在酒精/氧气燃气发生器模拟的液体火箭发动机富氧燃气环境中的烧蚀性能, 分析了穿刺C/C复合材料的烧蚀机理及燃气参数对烧蚀性能的影响. 结果表明, 喷管喉部线烧蚀率为(0.055±0.029)mm/s, 质量烧蚀率为0.186kg/(m2·s). 喷管收敛段下游到喉部区域烧蚀最严重, 收敛段上游其次, 扩散段烧蚀最弱. 烧蚀过程是热化学烧蚀和气流冲刷综合作用的结果, 燃气温度和氧化性组分H2O和CO2含量决定穿刺C/C复合材料热化学烧蚀率, 压强和流速影响穿刺C/C复合材料的机械剥蚀.  相似文献   

8.
电耦合CVI制备穿刺C/C喉衬材料的微结构及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用电耦合化学气相渗透(CVI)联合树脂浸渍碳化工艺制备了穿刺碳纤维预制体增强C/C喉衬材料,利用μ-CT表征了穿刺C/C材料增密不同阶段孔隙尺寸,研究了该材料2 800℃拉伸性能和缩比固体发动机烧蚀性能。结果表明,电耦合CVI增密后穿刺C/C喉衬材料孔隙主要存在于纤维束间,呈现空间联通的网状结构,树脂碳循环致密后材料内部仍残存少量体积0~0.08 mm3的微小孔隙,孔隙呈现孤立的点分布状态。穿刺C/C材料2 800℃拉伸强度略高于室温,断裂应变比室温提高118%,表现出优异的非线性断裂行为。穿刺C/C喉衬缩比固体发动机点火试验后线烧蚀率0.077 mm/s,喉衬不同区域的烧蚀机制有一定差异,喉衬收敛段穿刺纤维束承受驻点烧蚀,产生蜂窝状烧蚀凹坑,烧蚀较严重,喉部和扩散段烧蚀较为平滑。  相似文献   

9.
抗烧蚀C/C复合材料研究进展   总被引:1,自引:0,他引:1  
C/C复合材料因优异的高温性能被认为是高温结构件的理想材料。然而,C/C复合材料在高温高速粒子冲刷环境下的氧化烧蚀问题严重制约其应用。因此,如何提高C/C复合材料的抗烧蚀性能显得尤为重要。笔者综述C/C复合材料抗烧蚀的研究现状。目前,提高C/C复合材料抗烧蚀性能的途径主要集中于优化炭纤维预制体结构、控制热解炭织构、基体中陶瓷掺杂改性和表面涂覆抗烧蚀涂层等4种方法。主要介绍以上4种方法的研究现状,重点介绍基体改性和抗烧蚀涂层的最新研究进展。其中,涂层和基体改性是提高C/C复合材料抗烧蚀性能的两种有效方法。未来C/C复合材料抗烧蚀研究的潜在方向主要集中于降低制造成本、控制热解炭织构、优化掺杂的陶瓷相以及将基体改性和涂层技术相结合。  相似文献   

10.
采用浆料浸渍法引入ZrB2微粉作为耐超高温相, 以炭纤维为增强体, 以热解炭和SiC为基体, 制备了ZrB2含量不同的耐超高温C/C-SiC-ZrB2复合材料; 通过电弧风洞考核材料的抗烧蚀性能, 通过XRD、SEM和EDS分析材料的烧蚀机理。结果表明: 在Ma 6电弧风洞条件下, C/C-SiC-ZrB2复合材料的抗烧蚀性能优于C/C-SiC, 且随着ZrB2含量的增加, 抗烧蚀性能随之提高; 在高温阶段形成的ZrO2-SiO2玻璃态熔融层起到了抗氧化烧蚀的作用。  相似文献   

11.
冲击损伤对C/C复合材料烧蚀性能的影响   总被引:1,自引:0,他引:1  
利用Split Hopkinson Pressure Bar(SHPB)装置, 对炭化铪含量为2wt%的C/C复合材料进行了载荷峰值为137MPa的动态冲击损伤, 采用氧乙炔烧蚀装置研究了冲击损伤对C/C复合材料烧蚀性能的影响, 并结合扫描电镜讨论了冲击损伤对样品烧蚀机理的影响. 研究结果表明: 与未受冲击的C/C复合材料相比, 冲击损伤后, 复合材料的质量烧蚀率增加了40%, 线烧蚀率增加了118%.  相似文献   

12.
C/C-Cu复合材料等离子体烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究渗铜对C/C复合材料烧蚀性能的影响,利用化学气相渗透(CVI)和液态压力浸渗工艺制备了C/C-Cu复合材料,并采用等离子体烧蚀装置对C/C-Cu复合材料进行烧蚀,研究其烧蚀性能。结果表明: Cu的加入有效缩短了材料的制备周期;Cu均匀分布在C/C坯体内,呈连续的网状结构;在烧蚀前30 s阶段,Cu通过熔化吸热降低了C/C-Cu试样的升温速度,C/C-Cu复合材料的线烧蚀率低于C/C复合材料,耐烧蚀性能优异;随着烧蚀时间的延长,C/C-Cu复合材料表层的Cu液被火焰带走,表层变为多孔低密度的C/C层,C/C-Cu复合材料的线烧蚀率迅速增加并超过C/C复合材料,耐烧蚀性能降低。  相似文献   

13.
粒子浓度对C/C复合材料烧蚀行为的影响   总被引:1,自引:0,他引:1  
为研究不同粒子浓度侵蚀条件下C/C复合材料的烧蚀机理及性能,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的C/C复合材料进行烧蚀/侵蚀实验,实验的粒子浓度分别为0,1.37%,2.22%,2.64%。采用扫描电镜(SEM)观察实验后试样的微观形貌,测算了试样的烧蚀率,研究了粒子浓度对材料烧蚀率的影响规律,分析了材料的烧蚀机理。结果表明:不加粒子时试样的质量烧蚀率仅为0.159g/s,线烧蚀率为0.175mm/s,加入粒子后质量烧蚀率与线烧蚀率的最小值分别为0.432g/s和0.843mm/s,且随粒子浓度的增加,烧蚀率均加速增加。粒子的侵蚀作用加剧了试样的烧蚀,冲刷面上径向纤维的烧蚀梯度随粒子浓度的增加而增大。  相似文献   

14.
烧蚀角度对C/C复合材料烧蚀行为的影响EI北大核心CSCD   总被引:1,自引:0,他引:1  
烧蚀角度对C/C复合材料的耐烧蚀性能有显著的影响,采用自主研发的氧-煤油烧蚀实验系统对轴棒法编织的三维四向C/C复合材料进行烧蚀/侵蚀实验,实验的典型角度分别为90°,60°,45°,侵蚀时的粒子浓度为1.37%。测算试样的宏观烧蚀率,并采用扫描电镜(SEM)观察了试样烧蚀后的微观形貌。分析了角度对C/C复合材料烧蚀行为的影响规律,并探讨其烧蚀机理。结果表明:不加粒子进行烧蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.146,0.123,0.100g/s,随烧蚀角度的减小,质量烧蚀率加速降低;加粒子进行侵蚀实验时,烧蚀角度90°,60°,45°对应的试样质量烧蚀率分别为0.452,0.455,0.432g/s,线烧蚀率分别为1.863,1.323,0.843mm/s,随烧蚀角度的减小,质量烧蚀率基本不变,线烧蚀率逐渐降低。烧蚀角度越小,射流的冲刷作用越强,伴随热化学烧蚀的作用,导致烧蚀/侵蚀实验条件下,径向纤维的烧蚀梯度均增加;烧蚀实验条件下,轴向纤维束外沿的受冲刷区域变大。  相似文献   

15.
采用电弧驻点烧蚀试验方法测试了具有典型光滑层和粗糙层热解炭结构的两种C/C复合材料的烧蚀率,研究了热解炭结构对C/C复合材料烧蚀性能的影响.结果表明:热解炭结构对C/C复合材料烧蚀性能有较大的影响.具有粗糙层结构的C/C复合材料石墨化度高,不同炭结构之间结合好,线烧蚀率和质量烧蚀率较小,烧蚀性能较好;具有光滑层结构的C/C复合材料石墨化度低,烧蚀性能较差.  相似文献   

16.
采用先驱体转化(PIP)法制备了不同ZrC含量的(C/C)/SiC-ZrC复合材料,考察了ZrC含量对复合材料微观结构和抗烧蚀性能的影响。结果表明,氧乙炔烧蚀600 s后,(C/C)/SiC复合材料表面疏松,出现了较大的烧蚀凹坑;而(C/C)/SiC-ZrC复合材料表面相对较致密,被白色氧化物质覆盖,烧蚀率均有所降低。在较低的ZrC含量下,(C/C)/SiC-ZrC复合材料表面形成ZrO2-SiO2二元共熔体系氧化膜,有效抑制氧化性气氛向复合材料内部渗透,同时氧化物不断熔化和挥发,降低了复合材料烧蚀表面的温度;而当ZrC体积分数为12.4vol%时,在烧蚀过程中(C/C)/SiC-ZrC复合材料表面能形成一个ZrO2外层/SiO2内层的双层结构保护膜,ZrO2是一种优异的热障材料,且导热系数较低,使烧蚀过程中烧蚀区域热扩散降低,因此(C/C)/SiC-ZrC复合材料表现为较高的表面温度,但双层氧化膜阻挡有氧气氛进一步进入复合材料内部,使复合材料表现出优异的抗烧蚀性能。   相似文献   

17.
通过液态浸渍结合热梯度化学气相渗透(TCVI)制备了碳化铪含量为2.5%(质量分数)的C/C (HfC-C/C)复合材料.利用split Hopkinson pressure bar (SHPB)装置,对HfC-C/C复合材料进行了不同载荷冲击损伤,采用氧乙炔火焰烧蚀法测定了复合材料的烧蚀性能,结合扫描电镜分析了冲击损伤对HfC-C/C复合材料烧蚀性能的影响.结果表明:动态冲击损伤对HfC-C/C复合材料线烧蚀率的影响不显著,而其质量烧蚀率随冲击载荷的增加而增加,且冲击载荷对HfC-C/C复合材料质量烧蚀率的影响存在有一个阈值,超过此值,材料的质量烧蚀率显著增加.  相似文献   

18.
采用包埋法和低压化学气相沉积(CVD)法在碳/碳(C/C)复合材料表面依次制备了Ta2O5-TaC内涂层和SiC外涂层,用X射线衍射分析(XRD)、扫描电镜(SEM)及电子能谱(EDS)对涂层的相组成、微观形貌和元素组成进行了分析,研究了涂覆涂层后C/C复合材料在1 500℃静态空气中的防氧化性能及在氧-乙炔烧蚀中的抗烧蚀性能。结果表明:采用两步法制得的Ta2O5-TaC/SiC复合涂层结构致密,该复合涂层有效提高了C/C复合材料的抗氧化和抗烧蚀性能;Ta2O5-TaC/SiC复合涂层在1 500℃静态空气环境下可对C/C复合材料有效保护100 h以上;涂层试样在氧乙炔烧蚀环境中烧蚀60 s表明涂层可将C/C复合材料的线烧蚀率降低47.07%,质量烧蚀率降低29.20%。  相似文献   

19.
C/C复合材料在高温下的氧化烧蚀严重制约了该材料在航空航天领域的推广应用,应用难熔金属碳化物(MC)可以明显提高其抗氧化耐烧蚀性能。重点总结了国内外近几年来应用难熔金属碳化物(MC)提高C/C复合材料高温抗氧化耐烧蚀性能的机理及制备方法的研究现状,指出目前存在的不足,并提出了今后潜在的发展方向。  相似文献   

20.
2D-C/C复合材料及其石墨化制品烧蚀特性分析   总被引:1,自引:1,他引:1  
以液化石油气为碳源,2D炭纤维织物为基体,通过1000℃~1100℃沉积热解炭,制备了沉积态2D-C/C复合材料。通过对沉积态2D-C/C复合材料在2800℃热处理10h制备了石墨态2D-C/C复合材料。采用小型发动机烧蚀实验对两种复合材料的烧蚀性能进行了测试和评价;通过比较两种复合材料的孔隙分布、基体和纤维的结合强度以及热导率,解释了它们不同的烧蚀特性和烧蚀机理。结果表明:沉积态2D-C/C复合材料由于孔隙分布少、基体和纤维结合强度大、面间热导小,烧蚀主要由热化学反应(氧化)控制,烧蚀表面平整,烧蚀率为0.033mm/s。石墨态2D-C/C复合材料由于孔隙分布多、基体和纤维结合强度小,烧蚀主要由氧化和机械剥蚀控制,烧蚀表面出现烧蚀坑,烧蚀率为0.046mm/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号