首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
构建五轴加工中心空间误差模型的关键环节在于准确辨识旋转轴位置相关几何误差元素(PDGE)和位置无关几何误差元素(PIGE).以某五轴加工中心为研究对象,提出了一种面向旋转轴PDGE和PIGE的区别建模辨识方法.以多体系统理论和齐次坐标变换为基础,以两运动链末端所构空间向量欧氏范数的演变规律为依据,推导建立旋转轴PDGE...  相似文献   

2.
为了方便快捷、准确地测量五轴数控机床旋转轴的安装误差,提出一种基于旋转轴综合误差测量的安装误差辨识方法。该方法借助于五轴数控机床的RTCP功能,测量某点绕旋转轴转动过程中的理论坐标与实际坐标的综合误差数据,通过误差数据的平面圆和直线拟合,实现了安装误差的分离和辨识,包括2项位移误差和2项垂直度误差。试验结果表明,该方法计算准确,可用于机床旋转轴的装配调试精度分析。  相似文献   

3.
以多体系统理论为基础建立了包含旋转轴几何误差的DMP60U型机床运动模型,并利用某公司的QC10球杆仪对DMP60U型的C轴和斜转轴B轴各4项位置误差分别进行测量和辨识。在对球杆仪测量点的在坐标系中的位置坐标表达分析后,得出了球杆仪测量圆的偏心率与位置误差间数学关系。通过运用机床RTCP功能控制多轴同步运动,设计进行不同高度下的4次测量,可辨识出这8项位置误差,快速高效。经实验验证,这种辨识方法测量结果精确,可用于五轴加工中心误差辨识。  相似文献   

4.
为降低转动轴几何误差对转台-摆头式五轴机床精度的影响,提出了基于球杆仪的位置无关几何误差测量和辨识方法。基于多体系统理论及齐次坐标变换方法建立了转台-摆头式五轴机床位置无关几何误差模型,依据旋转轴不同运动状态下的几何误差影响因素建立基于圆轨迹的四种测量模式,并实现10项位置无关几何误差的辨识。利用所建立的几何误差模型进行数值模拟,确定转动轴的10项位置无关几何误差对测量轨迹的影响。最后,采用误差补偿的形式实验验证所提出的测量及辨识方法的有效性,将位置无关几何误差补偿前后的测量轨迹进行比较。误差补偿后10项位置无关几何误差的平均补偿率为70.4%,最大补偿率达到88.4%,实验结果表明所提出的建模和辨识方法可用于转台-摆头式五轴机床转动轴精度检测,同时可为机床精度评价及几何精度提升提供依据。  相似文献   

5.
针对五轴数控机床旋转轴的运动误差和几何误差的综合评估问题,在不考虑直线轴运动误差影响的情况下,提出了一种采用R-test测量仪的测量及其辨识方法。首先,测量过程按照参考球的两种不同高度设置进行,仅移动旋转轴,而不移动直线轴。其次,利用R-test测量仪对旋转轴的运动精度进行了测量。此外,假设旋转轴位置几何误差和工作台上参考球的设置误差是影响测量结果的因素,并通过最小二乘法对这些因素进行分离。采用IBS公司的R-test测量仪,对米克朗公司UCP800Duro立式五轴加工中心C轴的运动误差和几何误差进行了测量实验。研究结果表明,该方法能够正确识别旋转轴的运动误差和几何误差,可以有效地综合评估旋转轴的运动精度,并有助于进一步提高旋转工作台的精度。  相似文献   

6.
考虑五轴机床中的旋转轴误差会影响加工精度和在机测量结果,本文研究了旋转轴误差的在机测量与建模方法。介绍了基于标准球和机床在机测量系统的旋转轴综合误差测量方法,采用随机Hammersely序列分组规划旋转轴的测量角位置,通过自由安放策略确定标准球初始安装位置。然后,引入模糊减法聚类和模糊C-均值聚类(Fuzzy C-means,FCM)建立旋转轴误差的径向基(Radial basis function,RBF)神经网络预测模型。最后,进行数学透明解析,从而为误差的精确解析建模提供新途径。利用曲面的在机测量实例验证了提出的旋转轴误差测量与建模方法。结果表明:利用所建模型计算的预测位置与实测位置的距离偏差平均值为9.6μm,最大值不超过15μm;利用所建模型补偿工件的在机测量结果后,其平均值由32.5μm减小到13.6μm,最大误差也由62.3μm减小到18.6μm。结果显示,提出的测量方法操作简单,自动化程度高;模糊RBF神经网络的学习速度快、适应能力强、鲁棒性好,能满足高度非线性、强耦合的旋转轴误差建模要求。  相似文献   

7.
五轴联动数控机床旋转轴几何误差测量与分离方法   总被引:1,自引:0,他引:1  
提出一种基于球杆仪的新颖、快速的五轴联动数控机床旋转轴几何误差测量与分离方法,它选择径向和轴向安装测试路径,采用单旋转袖运动或1个旋转轴和2个直线轴联动方式,进行圆度误差测试,给出了旋转轴几何误差与各测试路径的关联图谱.并深入研究了球杆仪虚拟安装偏心技术.简化了旋转轴误差与球杆仪测试值的数学关联模型,并对影响测试结果的因素进行分析,提出采用球杆仪二次测量方法,对直线轴径向耦合误差进行解耦,实现了旋转轴几何误差的辨识和精确测量.  相似文献   

8.
利用球杆仪对五轴数控机床旋转轴的几何误差进行了测量及建模。在测试中,五轴数控机床采用两个平动轴和一个旋转轴同步运动,球杆仪采用径向、切向和轴向三种测试路径,并在此基础上对其进行几何误差建模。  相似文献   

9.
基于激光干涉仪的旋转轴误差快速检定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
皮世威  刘强  孙鹏鹏 《仪器仪表学报》2017,38(10):2484-2491
为了提升五轴数控机床各旋转轴精度,解决旋转轴几何误差难以测量的问题,提出了一种基于激光干涉仪的旋转轴几何精度快速测量方法。该方法针对AC双转台和BC摆头转台的结构特性,采用旋转轴与直线轴联动的测量技术,可以避免传统测量方法对旋转轴中心的依赖性,推导了测量中直线轴转角误差与直线度对旋转轴几何误差约束关系,在保证精度的同时减少了测量过程中的设备安装调试时间,实现了五轴机床旋转轴转角误差、重复转角误差以及反向间隙的快速测量和补偿。对实际五轴机床AC双转台几何精度进行检定,提高了旋转轴的几何精度,实验证明该测量方法具有很强的工程应用价值。  相似文献   

10.
旋转台几何误差的在机测量与辨识   总被引:2,自引:0,他引:2       下载免费PDF全文
旋转台是多轴数控机床的基本组成部件,其几何误差对加工精度具有显著的影响。以旋转台轴线的4项定位误差及6项运动误差的测量与辨识为目标,利用标准球和接触式测头设计简易、高效的综合误差在机测量方案,提出基于综合误差的分步辨识方法。首先,在旋转工作台上安装高度不等、位置不一的标准球以构建测量点系,并在不同旋转角度下,利用直线轴的插补运动带动高精度测量头测量球心误差。然后,依据小误差理论和齐次变换原理依次构建4项定位误差和6项运动误差的分步辨识模型,辨识出全部误差项。在带旋转轴的机床上进行实验验证与实际应用,结果表明:利用辨识结果计算的预测值与实际测量值相比,绝对误差不超过0.004 mm;利用辨识误差项修正后的工件在机测量结果与三坐标测量值相比,绝对误差也不超过0.006 mm,满足了高精度的应用要求。该方法具有操作简单、占机时间少、辨识精度高的特点,适合加工现场的快速、短周期标定。  相似文献   

11.
为了快速、系统地辨识双五轴数控铣削机床旋转轴几何误差,提出了一种基于R-test的误差测量辨识方法。根据R-test误差模型研究误差测量值与各项误差参数的关系,辨识旋转轴各个几何误差项以得到旋转轴的安装误差和运动误差;利用最小二乘法原理平面圆拟合和直线拟合的方法分别辨识出2项位移误差和2项垂直度误差;基于多体系统理论及齐次坐标变换方法建立刀具坐标系与工件坐标系的齐次坐标变换模型,并辨识出3项移动误差和3项转动误差;最后,根据所得辨识值对X向和Y向位移误差进行补偿。实验结果表明,补偿后X向和Y向位移误差明显减小,误差补偿结果验证了测量、辨识的准确性和有效性。  相似文献   

12.
对某五轴联动龙门铣床进行几何误差分析,并结合机床拓扑结构和多体系统理论的理想的位置、运动矩阵、位置、运动误差矩阵,利用激光干涉仪进行机床仅沿三坐标轴方向运动的误差检测,辨识滚角误差;平动轴的各项几何误差经补偿后,使用雷尼绍球杆仪分别与三坐标轴的方向平行,进行C回转轴误差检测,再使得球杆仪安装沿y轴有一偏移量,进行B轴的...  相似文献   

13.
钟磊 《机电信息》2022,(10):56-61
提出了一种利用球杆仪测量五轴机床旋转轴动态反向误差的新方法,该方法通过一个旋转轴和一个平行于该旋转轴轴线的直线轴进行两轴联动动态测量,测量路径是由球杆仪运动的球面和两联动轴运动的圆柱面相交得到的空间曲线,工作台侧小球设置在圆柱面切线上;通过误差敏感性分析和误差轨迹仿真对比分析,证明了该方法对旋转轴的动态反向误差能够达到充分敏感,并且能够适用于尺寸范围更广的旋转轴;通过在双五轴镜像铣机床上的测量实验,验证了该方法对旋转轴的动态反向误差测量识别的有效性。利用该方法指导旋转轴的伺服调试优化,有利于提高旋转轴的动态反向精度。  相似文献   

14.
为高效,简便,精确辨识三轴机械的几何误差,提出了一种新的位移辨识法,并以XYFZ型三轴立式机床为例,详细讨论了误差辨识的基本原理,该方法通过测量工作区内12条直线上的位移误差能快速,精确确定三轴机械的全部21项几何误差,缩短了误差辨识时间,并只需要少量的测量设备,是三轴机械精度评定的一种有效方法,特别适合经常性的精度监测和校正。试验结果验证了所述方法的正确性。  相似文献   

15.
由于能对几何形状复杂、精度要求较高的自由曲面进行加工,五轴机床在大型旋转机械的叶片和螺旋桨加工过程中得到了广泛应用,对其误差进行精确、高效地测量和辨识是提高其加工精度的前提和基础。对几种传统的五轴机床误差测量与辨识方法进行了介绍,指出了各种方法的优势和目前存在的主要问题。在此基础上,对切削加工法的发展现状进行了总结,供相关领域的研究人员参考。  相似文献   

16.
在数控车削加工中,有诸多因素影响产品质量,刀具切削刃与工件旋转中心不等高是造成产品不合格的重要原因,对此进行了重点分析并介绍了几种消除的方法。  相似文献   

17.
五轴数控机床是实现工件复杂表面精密加工的重要设备,而机床本身精度是保证加工精度的重要前提。以一台大型五轴数控加工机床为研究对象,分析各项误差,应用多体系统运动学理论,建立移动轴与旋转轴的几何误差数学模型,推导出刀具相对工件坐标系的位置与姿态误差表达式,为误差补偿提供精确数学模型,提高机床加工精度。  相似文献   

18.
几何误差是影响数控机床准静态精度的重要因素,针对几何误差测量、辨识问题,提出基于平面光栅的面—线机床空间几何误差辨识方法。依据多体系统理论和齐次坐标变换方法建立了三轴数控机床21项几何误差元素与3项误差向量之间的映射关系;规划了3个相互垂直的平面内的测量路径和辨识方案,通过单轴运动和两轴联动的形式可连续测量每个平面内的5条直线,进而依次确定垂直度、俯仰和偏摆误差、定位及直线度误差、滚转误差,减少了多次安装过程中安装误差累积对测量结果的影响;通过基于面—线法的21项几何误差测量和辨识实验,并与基于激光干涉仪测量辨识结果对比显示,平面光栅测量结果与激光干涉测量结果的空间误差向量最大偏差为2.4μm,平均偏差为0.77μm,验证了该方法对辨识机床精度是准确、有效的。  相似文献   

19.
根据齐次变换理论推导出旋转轴基本几何误差辨识模型,在此基础上,提出了一种基于球杆仪的旋转轴基本几何误差快速测量和辨识新方法,将球杆仪一端的中心座分别安装在旋转工作台的3个不同位置,通过联动控制球杆仪另一端球心按圆形轨迹运动,分别测量旋转轴圆周每个离散位置点在X、Y、Z方向上的偏差,并根据所建立的辨识模型,辨识出旋转轴的6项基本几何误差。同时,提出了基于系数矩阵灵敏度分析的方法,用于指导测量点的合理分布,减少测量误差的影响,从而提高误差辨识精度。  相似文献   

20.
五轴联动加工过程中会出现一类非线性误差——偏摆误差。首先,针对此类误差的产生进行了原理性说明,并建立了误差与两个旋转轴运动角度之间的运算关系;进而,对加工刀路中的误差超差位置进行判断,并通过限制旋转轴的运动角度来控制误差;最后,通过仿真和加工试验证明了该算法能够有效控制加工中的此类误差,更好的保证工件加工精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号