首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过双电子(2e-)途径的电催化氧还原方式能够即时合成过氧化氢(H2O2),远超传统的蒽醌工艺。近年来,碳电极因具有良好的催化效果和优越的稳定性在电催化合成H2O2方面受到越来越多的关注。本综述结合材料改性与润湿性调整,从三相界面的角度考虑与H2O2合成速率及使用寿命的关系。介绍了碳电极的结构与电催化合成H2O2的原理,包括单质炭材料、无金属催化剂、贵金属催化剂与非贵金属催化剂4种主流催化剂;金属阳极与电解液对于三相界面的影响;碳电极润湿性与三相界面的关系,指出侧重于提高2e-途径选择性的改性方式也会对电极润湿性造成影响。此外,合理地设计电器原件与提升碳电极合成H2O2功效的关系。最后,讨论了当前碳电极电催化合成H2O2所面临的问题与未来的研究方向。  相似文献   

2.
研究了以α-Fe2O3、β-Fe2O3和γ-Fe2O3为催化剂的类Fenton试剂溶液氧化吸收NO的过程,分析了3种Fe2O3的晶相结构和表面性质对NO脱除效率的影响机理。脱硝性能测试结果表明:γ-Fe2O3的活性最好,在H2O2浓度为1.5 mol/L、催化剂浓度为20 mmol/L、pH值为5以及反应温度为55℃等条件下,γ-Fe2O3的脱硝率可达87.5%。机理研究表明:3种Fe2O3催化H2O2分解湿法脱除NO的反应发生在催化剂表面,反应过程中存在氧化还原循环,H2O2催化分解的主要产物是·OH。活性差异分析结果表明:Fe2O3的晶相结构和表面性质对NO的脱除效果具有显著的影响,γ-Fe2O3的活性最高是由于比表面积大、分散性高和表面的Fe2+含量更多,而β-Fe2O3的活性高于α-Fe2O3是由于表面的氧空位含量更多。  相似文献   

3.
MoS2作为一种新型的类芬顿试剂经常被用于有机废水的去除。然而MoS2的活性位点仅存在于边缘硫,基面均为没有活性的惰性硫,导致其活化过氧化氢(H2O2)的能力有限。一种利用油浴加热法制备的非晶态MoSX(X=2~3)催化剂,可以实现对H2O2的高效活化。相对于MoS2,MoSX暴露出丰富的硫活性位点,不仅提高了污染物在水溶液中的吸附能力,同时为激活H2O2提供了丰富的活性位点。MoSX在40min内对盐酸四环素的降解率达到91.54%,远高于MoS2的37.54%。捕获剂实验表明,MoSX在光类芬顿体系TC污染物的活性物种包括·OH、·O-2和h+,其·OH起到主导作用。此外,MoSX催化剂还表现...  相似文献   

4.
O2通过电化学法直接合成H2O2是目前最有可能替代工业上高耗能的蒽醌氧化/还原法的合成方法,但其一直受限于难以开发出高效且低成本的电催化剂.在此,我们通过聚合物脱卤的绿色策略合成了氧化硼掺杂碳(O-BC)材料,将其用作2e-氧还原反应(ORR)的电极材料,采用电化学的方法制备H2O2.通过实验调控硼源(H3BO3)的用量和退火温度,优化了O-BC材料的催化活性.电化学测试表明:最佳的O-BC-2-650样品表现出高达98%的H2O2选择性;在H型碱性电解槽中H2O2平均产率为412.8 mmol gcat.-1h-1.密度泛函理论计算模拟表明:与一个氧原子相连的硼原子是最佳的活性位点,在吸附O2的氢化过程中获得最低的吉布斯自由能差(ΔG)0.03 e V;而没有与氧原子相连或者与两个...  相似文献   

5.
在常温条件下, 采用原位晶化法在铜网载体上合成了包含Keggin型杂多酸H3PMo12O40的Cu3(BTC)2(BTC= 1, 3, 5-均苯三甲酸)基金属-有机框架膜材料。利用XRD、FT-IR和SEM等方法对膜的结构、成分及形貌进行了表征。含磷钼杂多酸的Cu3(BTC)2基薄膜均匀地覆盖在铜丝表面上, 膜厚度约为8 μm, 晶体尺寸均一, 且融合生长。合成过程中, 经过预处理的铜网本身既是载体又是铜源。研究发现加入H2O2能有效地促进膜的合成。铜网负载的薄膜作为非均相催化剂, 在H2O2氧化降解罗丹明B的化学反应中表现出很高的催化活性, 反应100 min后, 降解率可达98%。膜催化剂重复使用三次, 均表现出较高的催化性能。  相似文献   

6.
甲酸驱动的双电子氧还原是在温和条件下合成过氧化氢(H2O2)的一种很有前途的方法.然而,在传统的催化体系中,反应物O2在固体/液体两相反应界面处的浓度通常较低,限制了反应动力学和H2O2的产率.在这一工作中我们通过将模型催化剂Pt-TiO2沉积在疏水多孔碳基底上,构建了具有气液固三相界面微环境的催化体系.基于这种三相体系,O2能够从空气中快速输送至反应界面,从而大大提高其在反应区的浓度.与传统的固液两相催化体系相比,三相体系中的H2O2的生成速率常数提高了10倍以上.这项工作突出了反应界面调控对催化反应性能的重要影响,为开发高效H2O2合成体系提供了思路.  相似文献   

7.
采用浸渍法合成了Cu-Mn/γ-Al2O3催化剂, 通过XRD、BET、H2-TPR和XPS等方法对经不同温度(300~600℃)焙烧的催化剂进行表征, 采用固定床管式反应装置考察了焙烧温度对催化剂催化氧化甲苯的影响, 并讨论活性组分、表面Cu+/(Cu++Cu2+)和Mn4+/(Mn4++Mn3+)摩尔比值与催化剂活性的关系。结果发现, 550℃焙烧温度的催化剂活性最好, 氧化能力最强, 其转化率为95%时对应的反应温度T95(286 ℃)最低, CO2的选择性达100%。在550℃焙烧时生成的Cu1.4Mn1.6O4新相以及催化剂表面中相对含量更高的Cu+和Mn4+是催化剂具有高活性的主要原因。  相似文献   

8.
基于活性氧自由基的抗肿瘤疗法近些年来得到了人们的广泛关注,主要包含光动力疗法、声动力疗法以及化学动力学疗法。其中,化学动力学疗法无需借助外部能量(光能或超声)和氧气,主要依赖金属催化剂(Fe2+、Cu+等)与H2O2分子发生芬顿或类芬顿反应,即可产生高细胞毒性的羟基自由基(·OH)等强氧化性活性物种,该活性物种可破坏细胞脂质、蛋白质和DNA等生物大分子,引发细胞凋亡,从而达到肿瘤治疗的目的。相比应用于传统化学动力学疗法的纳米材料(Fe3O4、Cu2O等),金属过氧化物材料具有在低pH下响应降解、自供H2O2等特点,在应用于肿瘤化学动力学疗法时展现出巨大的优势,逐渐得到了人们的重视。金属过氧化物材料可以在肿瘤病灶区弱酸微环境下生成H2O2与金属离子,依靠肿瘤病灶区H2O2水平的提高和金属离子过载,或者通过产...  相似文献   

9.
化学动力学治疗(CDT)是通过使用芬顿催化剂将细胞内过氧化氢(H2O2)催化成羟基自由基(·OH)以杀死癌细胞的一种新型治疗方法。然而,内源性H2O2含量不足以及单一治疗的局限性限制了CDT的治疗效率。本工作报道了一种负载过氧化铜(CuO2)的介孔二氧化硅纳米颗粒(MSN)。其中,MSN内部负载化疗药物阿霉素(DOX),其表面负载催化剂CuO2封堵孔道,避免药物提前早释。在肿瘤微环境(TME)刺激下,CuO2分解产生外源性H2O2和类芬顿离子Cu2+,Cu2+消耗细胞内谷胱甘肽(GSH)生成Cu+,Cu+催化外源性H2O2生成高细胞毒性的·OH,协同化疗药物DOX实现CDT和化疗的联合治疗,提高抗肿瘤疗效。此外,体外细胞实验研究表明,该芬顿催化剂表现出良好的细胞...  相似文献   

10.
通过溶胶-凝胶-自蔓延燃烧法制备尖晶石型AFe2O4(A=Cu, Co, Ni, Mg, Zn)催化剂, 以甲苯为VOCs模拟气, 考察AFe2O4催化剂对VOCs的催化燃烧活性, 并采用XRD、N2吸附-脱附、SEM、TEM、H2-TPR、XPS对催化剂进行表征分析。结果表明: AFe2O4表现出较好的催化燃烧活性, 其中CuFe2O4的催化燃烧活性最佳, 起燃温度(T50)和完全燃烧温度(T90)分别为188℃、239℃。AFe2O4具有明显的片状尖晶石晶体, 并形成以介孔为主的多级孔结构, 该特点为催化剂提供了大量表面活性位。A位元素种类对其催化燃烧活性影响较大, 当A位元素为Cu时, Cu的H2还原峰面积远大于其他元素, H2还原温度仅为289℃, 表面亲电子氧和氧空位浓度占氧元素总量(Oele/O1S)的36%。CuFe2O4为片状反尖晶石晶型, 晶格体积仅为0.294 nm3, 并伴有CuO和α-Fe2O3物种。以介孔为主的多级孔结构、特有的片状反尖晶石晶型以及该晶型与CuO和α-Fe2O3的协同作用是CuFe2O4催化燃烧活性提高的主要原因。  相似文献   

11.
首先利用沉淀法合成了BiOCl纳米片, 然后利用研磨-焙烧法将La2O3纳米颗粒复合到BiOCl纳米片中, 制备了一系列La2O3/BiOCl复合光催化剂(La2O3: 1wt%、2wt%、4wt%、8wt%)。运用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、傅里叶红外光谱(FT-IR)和光致发光(PL)谱等对样品的晶相、光吸收和表面性能等进行了表征。以紫外灯(λ = 254 nm)为光源, 评价了所制备样品光催化降解高浓度染料酸性橙II(40×10-6)的活性。结果表明, 经过研磨-焙烧后该系列催化剂均具有较好的结晶性能, 同时2~5 nm的La2O3纳米粒子粘附在BiOCl纳米片表面。200℃焙烧制备的1wt%La2O3/BiOCl催化剂具有丰富的表面羟基, 对染料表现出较强的吸附性能。该催化剂表现了最高的光催化活性, 活性为纯BiOCl的2.4倍。另外, La2O3/BiOCl中的La3+提供的氧化-还原势阱可能捕获光生电子, 从而阻止了光生电子(e-)和空穴(h+)的复合, 有利于光催化活性的提高。  相似文献   

12.
采用共沉淀法合成席夫碱钴(SBCo)插层钴铬水滑石(CoCr-LDHs)材料。通过X射线粉末衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM-EDX)、X射线光电子能谱(XPS)、比表面积(BET)分析表征CoCr-LDHs以及CoCr/SBCo-LDHs材料的结构和性质。以H2O2作光催化助剂, 考察了不同插层量、催化剂用量以及亚甲基蓝溶液的初始浓度对光催化活性的影响, 并探究了光催化降解过程的动力学和主要的活性基团。实验结果表明: H2O2有助于提高水滑石材料的光催化性能, 以氙灯模拟太阳光, 20 mg CoCr/SBCo0.5-LDHs和H2O2的协同作用对初始浓度为25 mg/L的亚甲基蓝降解率高达99%。亚甲基蓝的光降解过程符合准一级动力学模型, 且起主要作用的活性基团为h +和·OH。  相似文献   

13.
为了提高Fe3O4的催化活性, 制备了磁性CeO2/Fe3O4复合纳米粒子, 构成非均相Fenton反应体系, 催化降解水环境中的氧氟沙星抗生素。研究了CeO2含量、H2O2浓度、pH等因素对CeO2/Fe3O4非均相催化活性的影响, 并通过溶出铁离子测定、动力学拟合等方式对反应机理进行探究。结果表明, CeO2/Fe3O4较Fe3O4具有更强的催化活性, 氧氟沙星的降解率随CeO2含量、H2O2浓度和溶液酸度的增加而提高, 当H2O2浓度为100 mmol/L 以及pH为3时, CeO2/Fe3O4(摩尔比=0.780)-H2O2体系催化降解氧氟沙星的效果最佳。CeO2/Fe3O4体系催化降解氧氟沙星反应遵循一级反应动力学方程, 反应机理主要为催化剂表面的催化反应, 同时CeO2产生氧空位的电子转移对Fe3O4的催化反应起到协同强化的作用。  相似文献   

14.
生物质转化获得的生物质油可作为重要的制氢原料, 选取生物质油的主要成分乙酸作为模型化合物, 开展了乙酸自热重整催化制氢研究。采用共沉淀法制备了铁促进的类水滑石型钴基催化剂, 用于乙酸自热重整制氢体系, 并利用XRD、H2-TPR、N2低温物理吸脱附、TG等表征手段对催化剂进行表征测试。结果表明: 通过共沉淀法获得了以类水滑石结构为前驱体的(Co/Fe)xAl2CO3(OH)y·zH2O物相; 该前驱体经焙烧后获得的氧化物, 其主要物相为氧化铝担载的尖晶石结构, 包括CoAl2O4、Co3O4、Fe3O4、FeAl2O4等, BJH模型计算显示CoxAl3FeyOm±δ催化剂形成了介孔结构, 其中Co0.45Al3Fe0.4O5.55±δ孔径分布集中在4 nm左右, H2-TPR及XRD测试显示添加助剂Fe提升了催化剂还原度, 并在还原过程中形成了CoFe合金; 所获催化剂在乙酸自热重整反应中, 氢气产率达到 2.72 mol-H2/mol-HAc, 并保持稳定。表征结果还显示, 该催化剂在反应中结构稳定, CoFe合金稳定存在, 并未出现积炭, 表明催化剂具有抗氧化、抗积碳的特点。  相似文献   

15.
缺陷工程被认为是提高催化剂性能的有效方法,因为它能使催化剂具有丰富的活性位点和合适的结合能,从而提高催化性能.本文采用简单的电沉积和酸蚀刻方法制备了双缺陷工程RuO2/D-Co3O4/CC(低Ru负载2.42 wt%)复合材料,用于增强酸性介质中的氧析出反应(OER).所制备的RuO2/D-Co3O4/CC催化剂采用物理化学技术进行了深入表征,结果表明催化剂中存在明显的阴离子和阳离子缺陷.实验研究表明具有双重缺陷的优化RuO2/D-Co3O4/CC催化剂暴露了更多的电化学活性位点,有效降低了催化反应对电解质中质子浓度的依赖性,从而触发了高性能的OER.只需要181 mV的过电位就能驱动10 mA cm-2的电流密度,并能在此电流密度下保持连续电解120 h. RuO2/D-Co3O4/CC是一种很有前途的...  相似文献   

16.
采用水解-沉积法, 在不同焙烧温度下制备了cat-500、cat-600、cat-700和cat-800系列NiO/γ-Al2O3催化剂。XRD和H2-TPR分析表明, 焙烧温度高于700 ℃, 活性组分与载体具有强烈的金属-载体相互作用(SMSI), 具体表现为活性组分前驱体以尖晶石NiAl2O4的形式存在。反应后催化剂的XRD、TG-DTG、TPH等表征结果表明, cat-700和cat-800试样的Ni晶粒尺寸分别为9.8和8.7 nm, 小于cat-500和cat-600试样(分别为15.7和13.6 nm), 分散性更好; 且催化剂表面积炭为丝状碳, 其不会导致催化剂失活, 但大量积累会引起床层压降升高, 影响催化剂的反应性能。cat-800试样110 h寿命试验表明, 高温焙烧制备的Ni基催化剂活性和稳定性均较高, CO2转化率达95%左右, 失活速率仅为0.0536%/h。  相似文献   

17.
分别采用Cu(NO3)2、H2O2和KMnO4对椰壳活性炭进行改性,研究了活性炭微观结构、表面化学性质变化,及其对SO2、NOx等酸性腐蚀性气氛的吸附性能。结果表明,Cu(NO3)2改性活性炭比表面积显著降低,平均孔径有所下降,Cu(NO3)2微晶分布于活性炭表面及微观孔道内,表面以碳、铜、氧和氮元素为主。H2O2改性活性炭比表面积有所增加,平均孔径减小,H2O2与活性炭表层反应后起到刻蚀效应,引入丰富的微纳孔道结构,使其表面含氧官能团增加,氧元素含量提升。KMnO4改性活性炭比表面积和平均孔径略微降低,KMnO4与活性炭表层反应后含氧官能团增加,反应产物附着于活性炭表面,改变其微观结构。三种方式改性的活性炭对SO  相似文献   

18.
过氧化氢(H2O2)是一种环保的活性氧和重要的绿色氧化剂.然而,到目前为止,实现高效和绿色可持续H2O2生产仍然面临挑战.本文中,我们展示了管状氮化碳(TCN)和ZnIn2S4 (ZIS)纳米片(TCN/ZIS)异质结的光催化产H2O 2性能:3小时内H2O 2的生产速率为2.77 mmol g-1h-1,分别为单独的TCN和ZIS的3.4倍和23.1倍.实验结果表明,TCN/ZIS异质结优异的光催化活性主要源于ZIS促进了电荷分离从而通过将O2还原为·O2-,然后生成H2O2来实现质子耦合电子转移过程.该工作提出了一种高效、绿色的H2O2生产策略,对环境修复具有重要科学意义...  相似文献   

19.
通过简单的水热法制备了Co3O4/rGO/g-C3N4催化剂,并在可见光照射下用于光催化臭氧氧化降解2,4-二氯苯氧乙酸(2,4-D)。利用XRD, SEM, TEM, XPS, UV-vis DRS, FT-IR和瞬态光电流对样品进行测试表征。研究表明,Co3O4, rGO和g-C3N4形成异质结后光生电子-空穴(e--h+)对的分离效率,e-的迁移能力以及光催化臭氧氧化活性都明显提升。此外,0.5Co3O4/0.25rGO/GCN对2,4-D具有100%的去除率,并具有最高反应速率(k=0.070 9 min-1)。经过计算得出光催化臭氧氧化2,4-D的协同因子为3.91,表明光催化和臭氧氧化间具有较好的协同效应。活性组分的捕获实验结果表明h+和·OH是光催...  相似文献   

20.
化学动力学疗法(CDT)利用肿瘤细胞内源性H2O2与芬顿催化剂反应生成高毒性的羟基自由基(·OH),从而杀死肿瘤细胞,但内源性H2O2不足和纳米粒子转运效率较低导致抗癌效果不理想。本研究制备了一种分散性良好、尺寸较小的铜掺杂介孔二氧化硅(Cu-MSN),负载化疗药物阿霉素(DOX)和抗坏血酸盐(AA)后,表面经叶酸(FA)和二甲基马来酸酐(DMMA)改性的壳聚糖(FA-CS-DMMA)以及羧甲基壳聚糖(CMC)包裹,得到pH响应型靶向纳米催化剂FA-CS-DMMA/CMC@Cu-MSN@DOX/AA(缩写为FCDC@Cu-MSN@DA)。扫描电镜显示纳米粒子FCDC@Cu-MSN@DA粒径约为100nm。体外48h内Cu2+释放量可达80%,药物DOX释放达到57.3%。释放的AA经自氧化后产生H2O2,诱导Cu2+发生类芬顿反应,从而增强CDT。细胞实验证明, FCDC@Cu-MSN@DA联合化疗药物表现出优异...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号