首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale.  相似文献   

2.
Nanostructured materials and their interfaces have attracted recent interest for their functionality in a wide variety of different applications. However, the origins of these properties in several instances remain unknown. One promising aspect of nanomaterials is their role in materials design for mitigating radiation damage. In particular, engineered radiation tolerant materials would exploit the presence of internal interfaces to act as recombination centers and suppress damage accumulation. Realizing this promise, however, requires a fundamental understanding of how radiation‐induced defects interact with interfaces. Thus, studying the interfacial atomic structure and chemistry before and after irradiation is critical. In this study, we have performed transmission electron microscopy on a series of pristine and ion‐irradiated oxide interfaces to probe radiation‐induced effects. The CeO2/SrTiO3 interface, chosen as a model system for these studies, is characterized by differences in SrTiO3 terminations or steps. Our salient result is that steps are centers for preferential amorphization in SrTiO3, which we attribute to defect flow across the interface induced by non‐stoichiometry in CeO2. The study concludes the interfacial atomic ordering in the form of steps thereby modifies the response to ion irradiation and suggests interface patterning as another parameter to functionalize radiation tolerant materials.  相似文献   

3.
The controlled nanoscale patterning of 2D materials is a promising approach for engineering the optoelectronic, thermal, and mechanical properties of these materials to achieve novel functionalities and devices. Herein, high‐resolution patterning of hexagonal boron nitride (h‐BN) is demonstrated via both helium and neon ion beams and an optimal dosage range for both ions that serve as a baseline for insulating 2D materials is identified. Through this nanofabrication approach, a grating with a 35 nm pitch, individual structure sizes down to 20 nm, and additional nanostructures created by patterning crystal step edges are demonstrated. Raman spectroscopy is used to study the defects induced by the ion beam patterning and is correlated to scanning probe microscopy. Photothermal and scanning near‐field optical microscopy measure the resulting near‐field absorption and scattering of the nanostructures. These measurements reveal a large photothermal expansion of nanostructured h‐BN that is dependent on the height to width aspect ratio of the nanostructures. This effect is attributed to the large anisotropy of the thermal expansion coefficients of h‐BN and the nanostructuring implemented. The photothermal expansion should be present in other van der Waals materials with large anisotropy and can lead to applications such as nanomechanical switches driven by light.  相似文献   

4.
One layer of self-assembled InMnAs quantum dots with InGaAs barrier was grown on high-resistivity (100) p-type GaAs substrates by molecular beam epitaxy (MBE). A presence of ferromagnetic structure was confirmed in the InMnAs dilute magnetic quantum dots. The one layer of self-assembled InMnAs quantum dots was found to be semiconducting, and have ferromagnetic ordering with a Curie temperature, T C =80 K. It is likely that the ferromagnetic exchange coupling of sample with T C =80 K is hole-mediated resulting in Mn substituting Ge. PL emission spectra of InMnAs samples grown at temperature of 210°C and 285°C show that the interband transition peak centered at 1.31 eV comes from the InMnAs quantum dot.  相似文献   

5.
The irradiation effect in Ni3N/Si bilayers induced by 100 MeV Au ions at fluence 1.5 × 1014 ions/cm2 was investigated at room temperature. Grazing incidence X-ray diffraction determined the formation of Ni2Si and Si3N4 phases at the interface. The roughness of the thin film was measured by atomic force microscopy. X-ray reflectivity was used to measure the thickness of thin films. X-ray photoelectron spectroscopy has provided the elemental binding energy of Ni3N thin films. It was observed that after irradiation (Ni 2p3/2) peak shifted towards a lower binding energy. Optical properties of nickel nitride films, which were deposited onto Si (100) by ion beam sputtering at vacuum 1.2 × 10−4 torr, were examined using Au ions. In-situ IV measurements on Ni3N/Si samples were also undertaken at room temperature which showed that there is an increase in current after irradiation.  相似文献   

6.
Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.  相似文献   

7.
The present study compares structural and optical modifications of bare and silica (SiO2) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni12+ ion beam with fluences 1012 to 1013 ions/cm2. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.  相似文献   

8.
The M-type barium hexaferrite Ba x Sr1−x Fe12O19 (where 0 < x < 1) alloys were prepared by a new ceramic procedure. The samples were studied using X-ray diffraction and Rietveld analysis, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy, infrared and M?ssbauer spectroscopy. The X-ray analysis indicates that the all the samples present a hexagonal structure. The IR spectra showed three main absorption bands in range of 400–600 cm−1 corresponding to SFO100 and BFO100. The M?ssbauer spectra showed a superposition of five subspectra associated with the five sites of the iron ion, which in the ferric state. The SEM studies showed that the hexaferrites presented grains that varied in the range of 260–305 nm. The dielectric properties: dielectric constant (ε′) and dielectric loss (tg δ) were measured at room temperature in the frequency range from 100 Hz to 40 MHz. The samples present a nonlinear behavior for the dielectric constant at 100 Hz, 1 kHz and 1 MHz. The dielectric constant is not following the linear mixing rule for the samples. The structural, dielectric and magnetic properties of the composite barium hexaferrite phases were discussed in view of applications as a material for permanent magnets, high density magnetic recording and microwave devices.  相似文献   

9.
We have nanostructured CoPt alloy layers prepared by molecular beam epitaxy, deposited directly on a MgO(0 0 1) substrate. The initial layer had the L10 tetragonal structure, ordered in the growth direction with an easy magnetization direction perpendicular to the layer plane. We realized by electron beam lithography and ion etching a network of dots spaced of 1 μm and lateral sizes of 1 μm, 500 nm and 300 nm, respectively. Whereas the continuous layers had a labyrinthine magnetic structure after perpendicular demagnetization, all the dots are monodomains with randomly distributed up and down magnetization. This is due to the fact that during the demagnetization the magnetic field is no longer sufficient to reach the nucleation field. Indeed, a single-dot hysteresis loop measured by field-dependent magnetic force microscopy shows a weak nucleation field distribution. However, the 3D micromagnetic calculations show a multidomain state for these dot sizes. This magnetic structure is similar to that observed on patterned samples, heated a short time (60 s) above the Curie temperature.  相似文献   

10.
We report on the effects of patterning and layering on multilayer InAs/GaAs(001) quantum dot structures laterally ordered using an in vacuo focused ion beam. The patterned hole size and lateral pattern spacing affected the quantum dot size and the fidelity of the quantum dots with respect to the lateral patterns. 100% pattern fidelity was retained after six layers of dots for a 9.0 ms focused ion beam dwell time and 2.0 μm lateral pattern spacing. Analysis of the change in quantum dot size as a function of pattern spacing provided a means of estimating the maximum average adatom surface diffusion length to be approximately 500 nm, and demonstrated the ability to alter the wetting layer thickness via pattern spacing. Increasing the number of layers from six to 26 resulted in mound formation, which destroyed the pattern fidelity at close pattern spacings and led to a bimodal quantum dot size distribution as measured by atomic force microscopy. The bimodal size distribution also affected the optical properties of the dots, causing a split quantum dot photoluminescence peak where the separation between the split peaks increased with increasing pattern spacing.  相似文献   

11.
Structural design and modification are effective approaches to regulate the physicochemical properties of TiO2, which play an important role in achieving advanced materials. Herein, a plasma‐assisted method is reported to synthesize a surface‐defect‐rich and deep‐cation‐site‐rich S doped rutile TiO2 (R‐TiO2–x‐S) as an advanced anode for the Na ion battery. An amorphous shell (≈3 nm) is induced by the Ar/H2 plasma, which brings about the subsequent high S doping concentration (≈4.68 at%) and deep doping depth. Experimental results and density functional theory calculations demonstrate greatly facilitated ion diffusion, improved electronic conductivity, and an increased mobility rate of holes for R‐TiO2?x‐S, which result in superior rate capability (264.8 and 128.5 mAh g?1 at 50 and 10 000 mA g?1, respectively) and excellent cycling stability (almost 100% retention over 6500 cycles). Such improvements signify that plasma treatment offers an innovative and general approach toward designing advanced battery materials.  相似文献   

12.
This study uses graphene oxide quantum dots (GOQDs) to enhance the Li+‐ion mobility of a gel polymer electrolyte (GPE) for lithium‐ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile‐co‐vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3?11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion?solvent clusters and immobilize anions, affording the GPE a high ionic conductivity and a high Li+‐ion transference number (0.77). When assembled into Li|electrolyte|LiFePO4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge?discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion?solvent clusters and degree of Li+‐ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li‐metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion?solvent coordination in GPEs and thus improve the performance and lifespan of LIBs.  相似文献   

13.
SnO2 has been considered as a promising anode material for lithium‐ion batteries (LIBs) and sodium ion batteries (SIBs), but challenging as well for the low‐reversible conversion reaction and coulombic efficiency. To address these issues, herein, SnO2 quantum dots (≈5 nm) embedded in porous N‐doped carbon matrix (SnO2/NC) are developed via a hydrothermal step combined with a self‐polymerization process at room temperature. The ultrasmall size in quantum dots can greatly shorten the ion diffusion distance and lower the internal strain, improving the conversion reaction efficiency and coulombic efficiency. The rich mesopores/micropores and highly conductive N‐doped carbon matrix can further enhance the overall conductivity and buffer effect of the composite. As a result, the optimized SnO2/NC‐2 composite for LIBs exhibits a high coulombic efficiency of 72.9%, a high discharge capacity of 1255.2 mAh g?1 at 0.1 A g?1 after 100 cycles and a long life‐span with a capacity of 753 mAh g?1 after 1500 cycles at 1 A g?1. The SnO2/NC‐2 composite also displays excellent performance for SIBs, delivering a superior discharge capacity of 212.6 mAh g?1 at 1 A g?1 after 3000 cycles. These excellent results can be of visible significance for the size effect of the uniform quantum dots.  相似文献   

14.
Composition dependent structural, optical nonlinear and limiting properties of PVA capped Zn1-x-yCdxCuyS quantum dots at different Cu:Zn ratio synthesized by insitu technique is subjected to detailed investigation. Cubic phase of the quantum dots were identified from XRD with particle size in the range 2.5 nm–3.5 nm find excellent correlation with the particle size measured from TEM. With increase in Cu concentration: systematic increment in lattice parameter, red shift in absorption edges and luminescence quenching is observed. Raman scattering reveals good photoactivity evidenced by intensity variation and shifting of LO and TO phonon modes. The intensity dependent third order nonlinearity is studied using Q switched Nd: YAG laser with 532 nm irradiation. Progressive increase in 3 PA coefficient indicated that prepared samples exhibit good nonlinear and optical limiting properties.  相似文献   

15.
Dong-Hee Park 《Thin solid films》2009,517(14):4222-3558
To enhance the weak mechanical durability of directly deposited copper layers on polyimide (PI) film due to their poor adhesive strength, a continuous roll-to-roll process involving surface modification using a reactive ion beam irradiation and in-situ deposition process is studied. The polyimide film is modified by an ion source with a linear stationary plasma thruster (LSPT) in the vacuum roll-to-roll process. An O2 ion beam, with beam energy of 214 eV and beam current density of 0.78 mA/cm2, and N2O ion beam, with 220 eV and 0.69 mA/cm2, irradiate PI film in winding speed of 0.5 m/min. The surface energy increases from 38 mN/m for the pristine PI film to 80 mN/m after beam irradiation at an ion fluence of 3.5 × 1016 ions/s. After beam irradiation, a 10 nm thick tie layer and 200 nm thick copper layer are successively deposited by in-situ DC magnetron web coating. The peel strength of the copper layer on the PI film is enhanced from 0.4 kgf/cm without ion beam treatment to 0.71 kgf/cm after O2 beam treatment and to 0.75 kgf/cm after N2O beam treatment. This enhancement is closely related to the increase in the polar force originating from the formation of hydrophilic CO (carbonyl) groups on the modified PI surface.  相似文献   

16.
The Fe60Ni40 (in atomic %) polycrystalline thin films with 90 nm thickness were prepared on 200 °C quartz substrate by using molecular beam vapor deposition method. The influence of 0 T and 6 T magnetic fields on the structural evolution and magnetic properties of thin films was studied by using EDXS, XRD, AFM and VSM. In this study, only α phase was formed in both thin films. It was found that the application of a 6 T magnetic field obviously decreases the RMS of surface roughness and the grain size. For the magnetic properties of the thin films, the 6 T magnetic field increases the saturation magnetism Ms in-plane and the squareness (Mr/Ms) of the hysteresis loop and decreases the coercive force Hc. This indicates the soft magnetic properties of the thin films have been notably enhanced in-plane by a high magnetic field. The relationship between the structural evolution and magnetic properties was discussed in details.  相似文献   

17.
Organic–inorganic hybrid perovskites, such as CH3NH3PbI3, have shown highly promising photovoltaic performance. Electron microscopy (EM) is a powerful tool for studying the crystallography, morphology, interfaces, lattice defects, composition, and charge carrier collection and recombination properties at the nanoscale. Here, the sensitivity of CH3NH3PbI3 to electron beam irradiation is examined. CH3NH3PbI3 undergoes continuous structural and compositional changes with increasing electron dose, with the total dose, rather than dose rate, being the key operative parameter. Importantly, the first structural change is subtle and easily missed and occurs after an electron dose significantly smaller than that typically applied in conventional EM techniques. The electron dose conditions under which these structural changes occur are identified. With appropriate dose‐minimization techniques, electron diffraction patterns can be obtained from pristine material consistent with the tetragonal CH3NH3PbI3 phases determined by X‐ray diffraction. Radiation damage incurred at liquid nitrogen temperatures and using Ga+ irradiation in a focused ion beam instrument are also examined. Finally, some simple guidelines for how to minimize electron‐beam‐induced artifacts when using EM to study hybrid perovskite materials are provided.  相似文献   

18.
Silicon carbon nitride thin films were deposited on Si (100) substrate at room temperature by plasma assisted radio frequency magnetron sputtering. The bonding structure and properties of SiCN films irradiated by pulsed electron beams were studied by means of X-ray photoelectron spectroscopy and nano-indentation. The results showed that electron beam irradiation had a great effect on the structure and property of the films. Under sputtering gas pressure of 3.7 Pa, a transition from the (Si,C)Nx bonded structure to the (Si,C)3N4 bonded structure was found in the SiCN thin film with electron beam irradiation. At sputtering gas pressure of 6.5 Pa, the enhancement of hardness in the SiCN film after treatment with electron beam irradiation resulted from the promotion of the sp3-hybridization of carbons bonds.  相似文献   

19.
Amorphous carbon nitride thin films have been prepared on Si (100) wafers by nitrogen ion beam assisted Nd:YAG laser ablation techniques. Amorphous carbon and carbon nitride films have also been prepared by the conventional laser ablation techniques for comparison. Raman spectroscopy and spectroscopic ellipsometry have been performed for the films to analyze structural properties, atomic force microscopy to observe surface morphologies, and scratch, acoustic emission, and Vicker hardness test to examine mechanical properties. The amorphous carbon nitride films deposited by the ion beam assisted laser ablation techniques had generally better mechanical properties compared to the amorphous carbon films and amorphous carbon nitride films deposited in N2 atmosphere. The amorphous carbon nitride films deposited at optimum ion beam current of 10 mA and laser power density of 1.7 × 109 W/cm2 showed excellent mechanical properties: root mean square surface roughness of 0.33 nm, friction coefficient of 0.02–0.08, the first crack and critical load of 11.5 and 19.3 N respectively, and Vicker hardness of 2300 [Hv]. It is considered that the films have high potential for protective coatings for microelectronic devices such as magnetic data storage media and heads.  相似文献   

20.
Morphological and magnetic properties of Mn x Ge1–x films have been investigated by scanning tunneling microscopy (STM) and magneto-optical Kerr effect (MOKE) measurements, respectively. Several Mn x Ge1–x alloys were grown by molecular beam epitaxy (MBE) on Ge(1 0 0) substrates, varying the growth temperature and alloy composition (x). STM analysis demonstrated island morphology with islands having a mean dimension ranging from about 100 to 130 nm, depending on the substrate temperature and Mn content in the film. Growth conditions also influence the island distribution. MOKE analysis, carried out on all the Mn x Ge1–x alloys, showed only a negligible hysteresis effect in the investigated temperature range from about 12 to 300 K. At low temperatures (below 70–110 K, depending on the sample), the MOKE signal tends to saturate at a magnetic field intensity less than about 0.5 T, indicating a superparamagnetic behavior. On the contrary, above that temperature the films do not show a magnetic character. The features of the MOKE curves depend on the growth parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号