首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文章以成都地铁9号线一期工程5标为工程背景,利用数值模拟软件建立了三维实体数值模型,对暗挖隧道上穿既有盾构隧道的影响进行了研究。选取暗挖隧道上穿既有盾构隧道的重叠断面处作为监测断面,对隧道开挖所引起的地表位移、盾构隧道的位移及盾构隧道结构于重叠处的竖向应力进行了分析,研究结果表明:(1)地表沉降最大值为18.1 mm,位于重叠断面中间区域;(2)在上穿隧道开挖完成后,引起两侧较远的土体略向上隆起,而导致左线盾构隧道右侧和右线盾构隧道左侧拱腰位移稍比另一侧大;(3)矿山法隧道的开挖会导致两条已经开挖完毕的盾构隧道有所上浮,上浮最大距离为右线隧道的7.4 mm,两条盾构隧道的上浮最大位置都位于重叠断面处;(4)矿山法隧道贯通后,重叠断面处隧道结构均受压,最大不超过6.5 MPa。  相似文献   

2.
为研究新建盾构隧道上穿既有隧道时对下部隧道影响,以南昌某地铁出入线上穿既有盾构隧道工程为依托,结合小曲线半径隧道、盾构机超载等特殊工况,采用有限元进行模拟分析。研究结果表明:盾构机超载将导致既有隧道纵向呈凹槽型沉降变形,最大值约-9.7 mm,管片弯矩值较未开挖时增长34.3%;上部开挖卸载将导致既有隧道纵向呈隆起变形,最大值约8.7 mm,管片弯矩值较未开挖时略有减小;既有隧道在盾构机超载及开挖卸载两者耦合作用下,纵向变形呈“S”型曲线,最大隆起值与最大沉降值差值高达13.8 mm。针对上述分析,提出对既有隧道施加钢支撑环+拱顶注浆的加固措施,隧道最大变形值较未加固时减小44.8%,验证了该加固措施的有效性,对小曲线半径段施工控制重难点进行分析,并提出相应建议,以期为相关工程提供参考依据。  相似文献   

3.
线叠交盾构隧道在地下空间内布置形式繁多,土体-隧道间相互作用机制复杂。针对多线叠交盾构上穿这种典型穿越施工形式,以宁波轨道交通5号线左右线并行上穿既有宁波轨道交通2号线工程为背景,形成两层隧道四线叠交的特殊工况,通过构建三维弹塑性有限差分动态模型,采用数值模拟和现场监测相结合的方法,研究盾构上穿施工对地表沉降和既有隧道竖向变形的影响,以及二次补偿注浆压力和注浆范围对地表沉降和既有隧道变形的修复作用。研究结果表明:上穿施工穿越段区间,由于开挖导致的地层扰动,地表沉降较大;既有隧道结构沉降呈现上浮趋势,双线的沉降规律存在时间差异,并且由于隧道刚度对土体的约束作用,使最终变形趋向于对称分布;既有隧道的水平收敛值较小,主要在新建隧道的施工阶段发生变化;二次补偿注浆压力控制在0.3~0.4 MPa的范围之内,此时的地表沉降和隧道结构沉降控制比较理想;随着补偿注浆范围的扩大,对于地表沉降以及隧道结构沉降的控制效果在不断减小;在穿越段的基础上向两侧延伸2D~5D(D为盾构开挖直径)的距离进行二次补偿注浆,对地表和既有隧道结构沉降的控制效果最佳。  相似文献   

4.
针对太原地铁2号线双塔西街站-大南门站区间隧道近距离侧穿太原公交公司住宅楼盾构施工存在的巨大安全隐患,运用MIDAS/GTS软件对左、右线隧道先后开挖贯通后,隧道周围地层变形情况及桩基础沉降、侧移进行了预测分析。结果表明:盾构隧道开挖贯通后地表沉降符合Peck沉降槽规律;隧道开挖引起土体变形进而使得桩基发生沉降,且桩基上下部分发生相反方向的侧移;模拟计算值与监测值较吻合,可采用该计算结果研究并指导施工。  相似文献   

5.
近距离多线叠交盾构施工对既有隧道变形的影响研究   总被引:5,自引:0,他引:5  
针对上海地铁新建11号线先下后上近距离穿越既有4号线,形成三层隧道四线叠交的特殊工况,采用有限元数值模拟和现场监测相结合的方法,考虑既有隧道周围土压力的分布规律,研究了盾构下穿施工时土仓压力和注浆压力以及上穿施工时压重范围和压重量对既有隧道变形的影响。研究结果表明:下穿施工结束时,既有隧道的沉降量不随土仓压力比的改变而改变,但随注浆压力比的减小而增大;上穿施工应采取压重措施预防既有隧道的上浮和局部隆起变形,宜遵循新建隧道同步压重为主,既有隧道压重为辅的原则。  相似文献   

6.
左右不对称小净距隧道合理的开挖顺序对隧道围岩稳定和支护措施优化有很大影响,本文通过数值模拟方法,对比分析了沈阳市地铁十号线长安路站至万泉公园站区间大小不等的两个水平并行小净距隧道施工顺序对夹岩受力、拱顶沉降和地表沉降的影响规律,结果表明,先开挖大洞后开挖小洞对夹岩受力和地表沉降相对更为有利。  相似文献   

7.
盾构穿越既有隧道的施工风险控制一直是城市地铁建设面临的难题也是研究的热点。针对盾构下穿既有大直径隧道工程施工风险控制难题,以北京地铁8号线王府井站—前门站区间盾构下穿国铁直径线为工程背景,建立了三维数值模型,采用FLAC3D有限元差分软件进行计算,并将既有隧道的变形分为5个阶段,对每个阶段的沉降影响进行了评估,最后将模拟数据与实测数据进行对比分析,以此验证该模型的有效性。研究结果表明:不同下穿阶段中,阶段3对既有隧道变形影响最为显著,受刀盘开挖、盾体通过、盾尾脱出三重因素的影响,该阶段内既有隧道的沉降占比最大;竖直方向上,既有隧道拱顶呈“V”型沉降槽,拱底呈“W”型沉降槽;水平方向上,下穿段正上方既有隧道发生向隧道内侧收敛的现象,并距新建隧道轴线越远,收敛现象逐渐减弱。  相似文献   

8.
结合某盾构隧道施工的工程背景,利用三维有限元软件数值分析盾构隧道施工对近距离既有隧道的影响。研究表明,既有隧道部分离盾构隧道掌子面越近,其拱顶沉降变化速率越大。既有隧道拱顶沉降量呈现出前期、后期沉降量变化速率较平缓,中期变化速率较大的规律;新建隧道施工时既有隧道的水平变形为由两侧向隧道内凸,其中靠近盾构隧道部分的变形量远大于远离盾构隧道的部分,但两者变形量均在预警值之内。此外,根据现场监测数据的反馈结果判断,盾构施工对既有隧道水平位移影响在安全可控范围之内,盾构隧道施工期间2号线地铁能维持安全运营;既有隧道中施加列车动荷载后,新建盾构隧道的拱顶沉降变化量约为0.1 mm,此变化量对实际盾构施工造成的影响极小,基本可忽略不计。  相似文献   

9.
《市政技术》2015,(6):150-153
因隧道开挖引起的土体沉降可能导致路面沉降和塌陷、引起地下既有管线差异沉降过大而开裂、引起邻近建筑物地基不均匀沉降进而开裂,因此对地铁隧道施工引起的环境变形研究显得尤为必要。以北京地铁14号线十里河站—南八里庄站矿山法区间隧道为研究对象,对地表沉降进行监测并对沉降数据进行分析。通过对4个监测断面、若干监测点地表沉降的对比分析得出,近距离双线隧道开挖地表沉降过程大致分为4个阶段,总体沉降规律与理论分析相同。  相似文献   

10.
软弱围岩段隧道施工过程中围岩位移的三维弹塑性数值模拟   总被引:18,自引:5,他引:18  
以渝黔二期工程笔架山隧道埋深最大的软弱围岩段实体建模,应用有限元程序对其施工全过程进行三维弹塑性数值模拟,从而得出该段某一指定横断面上各点围岩沉降及水平位移随开挖过程的变化规律和数值大小。计算结果表明:对沉降和水平位移影响最大的是在指定段前后各3m的范围内,约占其总量的2/3,而上台阶开挖的影响又明显大于下台阶开挖;在掌子面未开挖之前,围岩沉降和水平位移均已完成40%先右;从横断面上看,围岩位移比较明显的区域主要集中在距洞壁3~5m处。另外,现场实际量测拱顶下沉数据和拱腰水平收敛值与计算数据的相互比较表明,两者变化规律吻合较好。  相似文献   

11.
通过离心模型试验模拟平行盾构隧道近接开挖施工,研究了盾构隧道近接开挖对既有隧道结构内力、管片变形和地表沉降的变化规律。结果表明:1隧道开挖引起地表沉降的大小与开挖的步骤有关,而沉降槽的范围基本不变;2既有隧道靠近新建隧道一侧受拉,这一侧弯矩出现负增量,侧向土压力也有一定的减小,且既有隧道直径水平向变大,而垂向直径基本不受影响;3由于土拱效应,新建隧道已完成开挖部分管片拱顶的土压力随开挖进程先减小后增大;4采用地层结构法可以准确模拟隧道开挖过程的隧道结构力学特性与变形规律。  相似文献   

12.
以武汉新建轨道交通12号线盾构区间下穿既有2号线长~汉盾构区间为工程背景,采用三维数值模拟分析新建线路施工对既有轨道交通变形的影响。研究结果表明:盾构掘进施工对既有结构及线路影响较小,盾构隧道贯通后区间结构最大竖向位移为–4.96 mm,最大水平位移为0.309 mm,2号线盾构区间累计最大沉降量为–2.86 mm,区间结构变形量和沉降量在相关规范控制范围内,满足区间安全运营要求。通过设计上加强管片配筋、增加注浆孔,隧道施工中加强掘进参数控制和及时同步注浆,加强二次注浆,同时对2号线长港路站—汉口火车站区间设置监测点,指导施工,保证地铁安全运营。  相似文献   

13.
浅埋暗挖隧道近距下穿既有地铁的关键技术   总被引:5,自引:1,他引:5  
 主要针对越来越多的浅埋暗挖隧道近距下穿既有地铁工程,结合北京地铁5号线崇文门站下穿既有地铁2号线区间隧道工程,介绍新建浅埋暗挖隧道近距下穿既有地铁隧道的关键控制技术。主要包括:对既有地铁的现状进行全面调查评估;根据现状评估结果并结合理论分析和类似工程经验确定既有地铁的变形控制标准;通过有限元分析方法等进行新建隧道施工对既有地铁影响的预测分析;对主要施工方案进行优化,并选取超前大管幕、掌子面注浆、补偿注浆等辅助措施;根据数值分析结果并结合既有工程经验,将主要控制标准按施工步序进行分解,实施控制标准的分阶段控制;通过远程实时监控系统即时监测和分析既有地铁的动态变化,对出现的结构开裂、沉降过大等异常情况及时采取灌浆加固、注浆抬升等处理措施,确保既有地铁的正常安全运营。  相似文献   

14.
依托沈阳乐天二期地标塔项目深基坑临近既有运营隧道项目,采用现场监测和数值模拟的方法研究基坑开挖及主体结构建造完成对既有运营隧道的影响,结果显示:基坑开挖完成后,既有运营隧道水平方向上向基坑一侧移动,在竖直方向上向上隆起,水平位移与数值位移均未超出安全限值,基坑围护结构设计是安全可靠的。  相似文献   

15.
以北京地铁五号线东单站近距离上穿既有线东单-王府井区间为例,采用FLAC3D非线性大变形程序对交叉隧道采用浅埋暗挖四步台阶法进行新隧道施工引起的地层变形进行了三维数值模拟,再现了土体随开挖位移及应力变化规律,对既有隧道开挖位移分布模式及受车站开挖变化规律、地表与拱顶沉降规律对比、各地层竖向沉降规律,并与现场试验断面的实测数据对比分析,验证了结果的可靠性.  相似文献   

16.
南京某地下步行通道采用非开挖顶管法施工,顶管近距离穿越既有地铁区间隧道及城市主干道。为了保证隧道及主干道安全,施工前建立三维有限元计算模型,模拟施工全过程,预测施工可能引起的隧道及地表变形。根据数值模拟结果提出针对性控制措施,并制定合理的监测方案,分别对隧道竖向位移、水平位移、径向收敛和地表隆沉进行监测。基于监测数据分析隧道及地表变形规律,明确顶管施工期间隧道及地表变形的3个不同发展阶段。研究表明:隧道竖向位移主要表现为隆起,由通道内出土卸荷所引起,工作井基坑开挖对其影响几乎可以忽略;顶管施工过程中,下覆隧道竖向位移先后经历了初始下沉、隆起增强和隆起稳定3个阶段,地表竖向位移先后经历了隆起增强、隆起减弱和沉降3个阶段;同一监测断面内,地表最大沉降位于通道中心轴线上方,距离通道越远沉降越小;采用微欠挖工艺有效控制了隧道最终隆起和地表最终沉降。  相似文献   

17.
以广深港客运专线隧道盾构施工、下穿深圳地铁3号线既有隧道为工程背景,利用FLAC3D软件进行施工过程模拟。探讨了施工过程中新建隧道周边地层位移、既有隧道地面、底部沉降的分布性状以及新建与既有隧道的安全。结果表明,最大沉降点都位于新建与既有隧道的中心线上,沉降分布以各自中心线为对称轴呈左右对称性状,在本地质条件和特定盾构推力情况下,地面沉降和隆起满足要求,既有隧道结构底板沉降满足运营要求。  相似文献   

18.
唐汐 《建筑结构》2023,(9):141-146+152
以北京地铁12号线大蓟区间下穿13号线高架区间为背景,在风险保护设计的基础上,完成了暗挖地铁隧道下穿地铁高架区间三维计算模型的建立,对比分析了不加固、仅洞外加固、洞外加固+桥桩底部加固三种工况下13号线高架区间结构竖向位移、水平位移、差异沉降变化特征,并将计算结果与实测结果进行了对比分析。研究表明:穿越施工显著影响范围约为4倍暗挖地铁隧道跨度;双线间既有结构受叠加施工影响大于双线外结构,是施工监测的关键位置;后施工隧道两侧承台差异沉降大于先施工隧道两侧承台差异沉降;现场监测结果反映了合理的暗挖隧道设计和洞内外风险控制措施是既有地铁线路保护的基础。  相似文献   

19.
王航 《土工基础》2019,(1):19-22
结合苏州地铁4号线北侧某建筑基坑开挖,用Midas GTS有限元分析软件对基坑施工过程进行计算模拟,分析基坑开挖对地铁4号线区间隧道的影响。结果表明:基坑开挖过程对地铁区间隧道影响最大,基坑回筑过程地铁区间隧道变形较小。基坑开挖过程中地铁区间隧道竖向最大沉降量为1.51 mm,隧道水平向最大位移为6.32 mm;建筑基坑开挖过程中地表沉降最大值为2.5 mm,基坑坑底隆起最大值为20.3 mm,最大值发生在开挖至坑底阶段;围护结构变形和受力满足设计要求。  相似文献   

20.
基坑开挖会对临近既有盾构隧道产生不利影响。分析了基坑开挖对临近既有隧道变形的影响机理,理论分析结果表明:基坑开挖卸载使隧道水平方向压力减小,导致隧道产生朝向基坑侧的水平方向位移;收敛变形仍呈"水平向拉伸、竖向压缩",但变形会加剧;首次提出基坑开挖深度决定了隧道竖向产生隆起或沉降;降水会使隧道产生下沉。收集了11项国内基坑工程实例,对实测数据进行了统计分析,结果表明:隧道最大水平位移值与隧道和基坑的净距离呈幂函数关系,提出了隧道最大水平位移值的经验公式,实测结果验证了影响机理理论分析的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号