首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提高钠离子电池正极材料的循环稳定性和比容量是实现其广泛应用的关键,基于引入特定杂元素可优化正极材料结构稳定性和比容量的策略,本研究采用便捷的固相反应法制备O3-Na0.9Ni0.5Mn0.3Ti0.2O2(NMTSbx, x=0,0.02, 0.04, 0.06)系列层状氧化物正极材料,对比研究了Sb掺杂对Na0.9Ni0.5Mn0.3Ti0.2O2正极材料储钠性能的影响。测试结果表明,引入Sb后过渡金属层中氧原子之间的静电斥力减小,晶格间距扩大,有利于Na+的脱嵌。且掺杂Sb所造成的强电子离域降低了整个系统的能量,获得了更有利于循环充放电的稳定性结构。在2.0~4.2 V测试范围下,未掺杂的NMTSb0在1C(240mA·g-1)倍率下初始放电比容量为122.8mAh·g...  相似文献   

2.
富锂层状氧化物是构筑高能量密度锂离子电池富有潜力的正极材料.然而,由于不可逆的结构变化和缓慢的界面动力学,传统的多晶富锂层状氧化物正极材料循环和倍率性能较差.本文提出了一种聚乙烯基吡咯烷酮(PVP-K30)辅助共沉淀制备单晶Li1.2Mn0.54Ni0.13Co0.13O2纳米片的方法.这种方法操作简单、成本低且便于放大生产.所制备的单晶纳米片内部晶格连续且无晶界,缩短了Li+的嵌入/脱嵌路径,加快了电极反应动力学过程.单晶结构还能抑制层状相向尖晶石相的不可逆相变和颗粒内部裂纹的形成,起到稳定层状结构的作用.电化学测试结果表明,所制备的Li1.2Mn0.54Ni0.13Co0.13O2单晶纳米片在0.1 C倍率下的可逆容量为254.5 mA h g-1,在5 C高倍率下循环1000次后容量保持率为71.9%.这种简单的制备纳米...  相似文献   

3.
张清波  李东林  高建行  李童心  张龙 《功能材料》2022,(12):12196-12202
采用溶胶-凝胶法合成Zn2+掺杂的LiNiO2(LNO)正极材料,研究了不同Zn2+掺杂量对LNO性能的影响。结果表明,2%(摩尔分数)Zn2+掺杂的镍酸锂正极材料(LNO-2Zn)具有优异的循环性能和倍率性能。在1C电流密度下循环100次,LNO-2Zn的容量保持率为80.0%,高于未掺杂LNO的74.8%;在10C大电流密度下,LNO-2Zn的首次放电比容量为112.1 mAh/g,高于未掺杂LNO的48 mAh/g。适量的Zn2+掺杂能够降低Li/Ni混排程度并且抑制有害相变的发生,从而提高LNO的电化学性能。  相似文献   

4.
水系可充电锌/二氧化锰电池因其成本低廉、能量密度高而引起了广泛关注.然而,缓慢的反应动力学和MnO2阴极的歧化反应以及不可逆的相变现象对其发展造成了严重阻碍.在此,我们选用了Mo掺杂α-MnO2 (MoMnO2)作为阴极材料,通过铵根离子插层机制所形成的N-H…O强键合作用来稳定Mo-MnO2的2×2隧道结构,并且有效抑制了Mn3+溶解,在质子插入/脱出过程中不会引起晶格的畸变,进一步提高了其循环稳定性.获得的Mo-MnO2正极在100 mA g-1时表现出265.2 mA h g-1的高比容量和364.3 W h kg-1的能量密度.在2.0 A g-1下1000次循环后,容量保持率达95.2%.这项工作有助于深入了解非金属阳离子在电极主体材料间的键合作用,为设计具有高能量密度和长期循环能力的水系锌离子电池提供了新思路.  相似文献   

5.
采用无焰燃烧法在500℃反应3 h,然后分别在600、650、700和750℃二次焙烧6 h制备了尖晶石型Li1.02Ni0.05Mn1.93O4正极材料。结果表明,不同焙烧温度制备的Li-Ni共掺材料没有改变LiMn2O4的立方尖晶石结构,且随着焙烧温度的升高,颗粒尺寸变大,结晶性提高。二次焙烧温度为700℃的Li1.02Ni0.05Mn1.93O4单晶多面体晶粒正极材料具有{111}、{110}和{100}面,且电化学性能较优,在1 C倍率下初始放电比容量为108.2 mA·h·g?1,循环500次后的容量保持率为76.8%;在5 C下首次放电比容量可达到99.0 mA·h·g?1,1000次循环后,仍能维持72.1%的容量保持率;在10 C下仍显示出71.3 mA·h·g?1的首次放电比容量及经500次循环后86.4%的容量保持率。并且其具有较大的Li+扩散系数和较小的表观活化能。Li-Ni共掺LiMn2O4单晶多面体材料能够有效抑制Jahn-Teller效应,减小Mn的溶解及增加Li+扩散通道,使材料的晶体结构稳定,提高倍率性能和循环性能。   相似文献   

6.
曹博  王辉  吕鑫  王娟 《功能材料》2022,(6):6230-6236
P2型层状氧化物正极材料在充放电过程中容易产生Na+/空位有序性和P2到O2/OP4相位转变,导致多个充放电平台。低钠P2型层状氧化物在深度脱钠时容易造成材料结构不稳定,限制了可逆容量。这些缺陷造成P2型层状氧化物正极材料倍率性差和容量快速衰减。为了抑制Na+/空位有序性和相位转变,采用溶剂热法结合Li+掺杂(0,0.05%,0.1%,0.15%摩尔分数)制备出了无多个电压平台和无相位转变的P2型Na0.85Mn0.6Ni0.3Li01O2(NMNL-0.1)层状氧化物正极材料。NMNL-0.1正极材料在2 C电流密度下进行200次循环后的容量保持率为83%,而未掺杂锂的P2型Na0.85Mn2/3Ni1/3O2(NMN)样品的容量保持率为30%。在20 C电流密度下NMNL-0.1正极材料的放电比容量为62.5 mAh·g<...  相似文献   

7.
由于钴价格的不稳定,无钴高镍LiNi0.9Mn0.1O2被认为是未来有潜力的正极材料,但是倍率性能弱和循环寿命短的问题阻碍了其商业化。通过Mo元素对无钴高镍LiNi0.9Mn0.1O2正极材料进行掺杂改性,延缓材料在充电阶段的有害相变,进而提升材料的倍率性能和循环稳定性。在1C倍率下,循环500圈后有着73.3%的容量保持率;即使在10C的高倍率下,依然有着152.05mAh/g的高放电容量。本研究为用于电动汽车的锂离子正极材料提供了新的选择。  相似文献   

8.
用超声辅助溶液燃烧合成技术制备双层碳包覆的Na3V2(PO4)3 (NVP)钠离子电池正极材料,并对其电化学性能进行深入的研究。结果表明,双层碳包覆在NVP颗粒表面,由内自外分别为无定形硬碳和石墨烯。石墨烯添加量为5.0%(质量分数)的碳包覆NVP复合材料具有优异的电化学性能,在1 C倍率下充放电其初始比容量为117 mAh·g–1,循环300圈后容量的保持率为79%,在10 C倍率下其放电比容量高达100 mAh·g–1。这种正极材料电化学动力学性能的提高,源于均匀的双层碳包覆结构及其构建的三维电子传输通道。  相似文献   

9.
用一步水热法制备B3+掺杂Birnessite-MnO2负极材料,使用XRD,Raman,SEM,TEM,XPS和恒电流充放电等手段表征了材料的结构和电化学性能。结果表明,B3+掺杂前后的MnO2都是由二维纳米片组装而成的花球,B3+离子掺杂使纳米片的厚度减小,从而缩短了锂离子和电子在材料内部的传输路径;掺杂适量的B3+离子,使Birnessite-MnO2的电荷转移电阻显著降低。B3+掺杂比例为9%的电极材料,具有最优的电化学性能。在电流密度为100 mA·g-1和1000 mA·g-1的条件下,首次充电比容量分别为855.1 mAh·g-1和599 mAh·g-1,循环100次后仍然保有805 mAh·g-1和510.3 mAh·g-1的可逆比容量,容量保持率分别为94.1%和85.2%。  相似文献   

10.
通过一种简便的方法制备氧空位缺陷的氢化TiO2包覆核壳结构C/Fe3O4@rGO(H-TiO2/C/Fe3O4@rGO)复合材料,作为锂离子电池(lithium-ion batteris, LIBs)高性能阳极材料。TiO2在Li+脱嵌过程中体积膨胀系数约为4%,可缓解Fe3O4在充放电过程中的体积膨胀,提高阳极材料结构的稳定性。同时,通过氢化处理改善TiO2较低的电导率(约1×10-12 S·m-1)。H-TiO2/C/Fe3O4@rGO在0.3 A·g-1的电流密度下循环200周次后比容量为867 mAh·g-1,在1 A·g-1的电流密度下循环700周次的比容量为505...  相似文献   

11.
采用乙二醇溶剂热法,以蔗糖为碳源,制备了橄榄石型纳米级LiFePO4/C复合正极材料,对其物相、形貌、结构、成分和性能进行了表征。结果表明,所制备的纳米LiFePO4/C的形貌为棒状,直径约为100 nm,结晶度高、分散性好。LiFePO4的粒径细化和掺碳有利于提高LiFePO4正极材料的电化学性能,其首次充放电比容量(0.1 C)分别为166 mAh·g-1和164 mAh·g-1,充放电电压平台分别为3.45 V和3.40 V;在5 C大倍率放电下,经过20次循环,其比容量保持率为95.4%。  相似文献   

12.
用电弧蒸发法和固相硫化法制备核壳结构的碳约束NiS2纳米材料(NiS2@C)。用X射线衍射(XRD)、透射电镜(TEM)和Raman等手段对其表征的结果表明,外部碳层有较多的缺陷,厚度为4 nm,NiS2的粒径为28 nm。作为Na-S电池正极材料的电化学性能:在电流密度为100 mA·g-1条件下NiS2@C正极材料4次循环后库伦效率保持在90%以上,循环500次后仍有106.8 mAh·g-1的可逆比容量,具有较高的循环稳定性。电化学阻抗分析结果表明,NiS2@C外部碳层的良好电子导电性和优异的结构稳定性加快了电极反应并维持着界面离子迁移的动力学平衡。  相似文献   

13.
用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。  相似文献   

14.
LiNi0.5Co0.2Mn0.3O2正极材料因能量密度高、循环稳定性好及安全性高而被认为是最有前途的高能量密度锂离子电池正极材料之一。然而,传统的常规碳酸酯基电解液的耐氧化性较差,导致LiNi0.5Co0.2Mn0.3O2正极材料在高电压条件下的容量快速衰减。在氟代碳酸乙烯酯(FEC)的基础上,研究了氟代线性碳酸酯(如二(2,2,2-三氟乙基)碳酸酯(TFEC)及甲基(2,2,2-三氟乙基)碳酸酯(MTFEC))替代碳酸二乙酯(DEC)在高电压下的循环稳定性。电化学测试结果表明,TFEC、MTFEC替代DEC后,4.5 V LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池45℃循环700圈后容量保持率分别从45.5%提高到72.5%、81.6%。线性扫描伏安法(LSV)、扫描电镜(SEM)、透射电镜(TEM)、X射线...  相似文献   

15.
为改善LiNi0.5Co0.2Mn0.3O2(NCM)锂离子电池三元正极材料的电化学性能,采用液相蒸发法将WO3包覆于NCM表面,得到NCM@WO3复合正极材料。通过XRD、SEM和TEM对NCM@WO3复合材料的结构和形貌进行表征,利用充放电测试、循环伏安及交流阻抗测试对其电化学性能进行表征。结果表明,当WO3包覆量为3wt%时,NCM@WO3复合材料性能最佳,在0.5 C下的首次放电比容量为179.9 mA·hg-1,不可逆容量损失降低至42.4 mA·hg-1,循环50圈后容量保持率为98.3%。WO3的包覆提高了锂离子扩散速率,减少了电极材料与电解液的副反应,NCM@WO3复合材料的电化学性能得到提升。   相似文献   

16.
本文采用溶胶-凝胶法制备了钴和钛共掺杂的层状LiNi0.82Co0.15Ti0.03O2正极材料,研究了离子掺杂对LiNiO2材料电化学性能的影响。XRD和XPS分析显示,钴和钛共掺杂可以抑制Li+和Ni2+离子在Li层的混排现象。电化学测试结果表明,钴单元素掺杂可以显著提高LiNiO2材料的倍率性能,而钛单掺杂则提高了材料的循环稳定性。进一步地,通过钴钛共掺杂的协同作用,可以使LiNiO2材料的倍率性能和循环稳定性同时得到极大的提高。在200 mA/g的电流密度下循环200次,LiNi0.82Co0.15Ti0.03O2材料的容量保持率高达94.4%,而未掺杂的LiNiO2材料容量保持率仅为57.1%;且在1000 mA/g的电流密度下,放电比容量仍能维持在100 mAh/g左右。  相似文献   

17.
无水氟化铜(CuF2)有望成为下一代锂电池正极材料,其高比容量(528 mA h g-1)和高工作电压(3.55 V vs.Li/Li+)使得其能量密度高达1874 w hkg-1.然而,由于充电时铜的溶解,CuF2正极容易失活,这限制了其发展.本研究采用氟化高浓电解液抑制铜的溶解,从而实现了CuF2正极的可逆循环.采用氟化高浓电解液后,CuF2正极的容量在30次循环后仍保有228 mA h g-1,是使用传统碳酸酯类电解液的电池容量的近三倍.综上,本研究提出了一种电解质工程策略,可以实现CuF2正极的可逆充放电.  相似文献   

18.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。  相似文献   

19.
近年来,TiO2作为钠离子电池(NIB)负极材料,因其低成本和高稳定性等优势受到广泛关注。但受TiO2本征电子导电性的固有限制,使得TiO2作为NIB负极材料导电性较差,导致其容量和倍率等性能不理想。利用海藻酸钠与金属离子自主交联反应的特性,将反应产物在最佳温度下进行简单碳化,制备了具有分级多孔结构的TiO2/C复合材料,其中TiO2纳米颗粒均匀地分布在多孔互连的碳基体中,该结构提升了复合材料导电性的同时扩展了钠离子反应的附着位点。将TiO2/C复合材料用于NIB负极材料,在100 mA·g-1的电流密度下循环300圈后,电池可逆比容量维持在180.4 mAh·g-1;进一步,在更高的1000 mA·g-1电流密度下经过1000次循环后,电池可逆比容量维持在102.3 mAh·g-1,充分显示出TiO2/C复合材料作为NIB负极材料的应用潜能。  相似文献   

20.
采用共沉淀法制备粒径10 μm左右的前驱体Ni0.8Co0.15Al0.05(CO3x(OH)y,然后采用该前驱体和LiOH·H2O成功制备了锂离子电池正极材料LiNi0.8Co0.15Al0.05O2(LiNCA),并详细研究了煅烧氛围、煅烧温度和煅烧方式等条件对LiNCA电化学性能的影响。研究表明,在O2中煅烧获得的LiNCA放电容量达到170 mAh·g-1,50次循环后容量保持率达到95%,性能明显优于空气氛围中煅烧得到的LiNCA。在O2氛围下,700~750℃温度范围煅烧得到的LiNCA性能最好,煅烧温度过高或过低,LiNCA性能均明显下降。将前驱体在O2氛围中450℃条件预煅烧,然后与LiOH·H2O在700~750℃混合煅烧的煅烧方式,得到的LiNCA放电容量明显提高,可达190 mAh·g-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号