首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
滕雅男  柳欢  徐薇  白杰  李春萍 《功能材料》2023,(2):2109-2122
石榴石型Li7La3Zr2O12(LLZO)固态电解质因高安全性且对锂金属稳定成为固态锂电池的关键材料。但是,石榴石型固态电解质离子电导率还有待提高以及固-固界面不良接触导致的界面电阻大等问题使LLZO基固态电池的实际应用受到了限制。从石榴石型LLZO结构角度出发,探讨了锂离子输运机制并综述了提高离子电导率的策略及最新成果。针对固态锂电池无法避免的界面问题,从LLZO固态电解质与同为固态的电极接触方面,总结了优化界面的具体方法。最后,提出了石榴石型固态电解质未来可研究的方向,并促进其在全固态锂电池中的发展和应用。  相似文献   

2.
目前,采用固体电解质代替传统电解液发展新型全固态锂离子电池,已成为解决电池安全问题、提高电池储能密度的一项重要的技术方法。固体电解质材料作为全固态锂电池的核心,它的性能很大程度上决定了电池的各项性能指标。迄今被研究过的无机固体电解质材料有很多,包括NASICON型、LISICON型、钙钛矿型和石榴石型等晶态固体电解质,和氧化物及硫化物等玻璃态固体电解质,其中石榴石型结构的Li_7La_3Zr_2O_(12)材料具有优异的综合电化学性能,使其更具实际应用潜力和研究价值。实验与理论计算结果表明该材料具有较高的锂离子电导率(10~(-4)~10~(-3)S·cm~(-1)),能与负极金属锂及大部分正极材料稳定接触,电化学窗口高达6 V。根据近年来国内外在该类材料上的研究现状,主要从Li7La3Zr2O12的晶体结构特征、制备方法及掺杂改性等方面进行了详细介绍,最后阐述了Li_7La_3Zr_2O_(12)固态电解质材料在全固态锂电池中的发展前景及面临的挑战。  相似文献   

3.
全固态锂离子电池具有高安全性、高能量密度、宽使用温度范围以及长使用寿命等优势, 在动力电池汽车和大规模储能电网领域具有广阔的应用前景。作为全固态电池的重要组成部分, 无机固体电解质尤其是石榴石型固态电解质在室温下锂离子电导率可达10 -3 S·cm -1, 且对金属锂相对稳定, 在全固态电池的应用中具有明显的优势。然而正极与石榴石型固体电解质间接触性能以及界面的稳定性差, 使得电池表现出高的界面阻抗、低的库伦效率和差的循环性能。本文以全固态锂离子电池正极与石榴石型固体电解质界面为研究对象, 分析了正极/固体电解质的界面特性以及界面研究中存在的问题, 综述了正极复合、界面处理工艺、界面层引入等界面调控和改性的方法, 阐述了优化正极与石榴石型固体电解质界面结构, 改善界面润湿性的解决思路, 提出了未来全固态锂离子电池发展中有待进一步改进的关键问题, 为探索全固态锂离子电池的实际应用提供了借鉴。  相似文献   

4.
锂离子电池中的液态电解质存在漏液、腐蚀电极、氧化、燃烧甚至爆炸等安全隐患,固态电解质因具有安全性高、能量密度大、循环寿命长以及稳定性良好等优点走进了大众的视野。目前,在所知的无机氧化物固态电解质中,钙钛矿型Li0.33La0.56TaO3(LLTO)电解质材料的综合性能较好,具有较高的晶粒电导率,并且和正负极材料之间具有良好的相容性,未来具有很大的发展前景。为了进一步提高该材料的总电导率,采用固相法将Ag掺杂到LLTO中,通过密度、交流阻抗和离子活化能等测试研究了不同掺杂量对LLTO相对密度、总电导率以及活化能的影响。  相似文献   

5.
固态锂金属电池(SSLMBs)因其高安全性和潜在的高能量密度引起了广泛的兴趣.然而,锂枝晶在固态电解质中的生长严重阻碍了SSLMBs的实际应用.在本文中,我们开发了一种简单的方法,通过热处理修复和回收被锂枝晶刺穿的石榴石氧化物电解质.与初始对照样相比,回收后的石榴石电解质表现出更高的相对密度、离子电导率和临界电流密度.热愈合是基于树突状锂枝晶和空气间的反应产物,其有助于在热处理过程中石榴石电解质的进一步致密化.这项工作为石榴石型固态电解质的回收利用开辟了一条新的途径.  相似文献   

6.
与传统锂离子电池相比,全固态锂金属电池因其安全性好、能量密度高的特点备受关注.但是电极与固态电解质的固固接触带来较大的界面阻抗,而锂金属较为活泼易与固态电解质发生反应,造成了界面不稳定.界面问题已经成为制约全固态电池发展的关键因素之一.有机-无机复合固态电解质兼顾无机固态电解质和有机固态电解质的优势,具有较高离子电导率和一定的力学强度,展现出优异的实用化前景.本文综述了近年来复合固态电解质与金属锂负极界面改性的研究进展,总结了当前界面改性的主要研究思路:包括在界面构筑"软接触"、调节固态电解质的力学性能以及调控界面处锂离子的沉积动力学过程等.同时,也对今后界面改性的研究趋势进行了展望.  相似文献   

7.
全固态锂离子电池的核心技术是固态电解质,它决定着电池的各种性能。在所有已开发的固态电解质中,无机固态电解质被认为是最可行的电解质之一。基于无机固态电解质的锂离子传导机理,从LISICON型、Garnet型、Perovskite型和NASICON型四个类型,介绍了无机固态电解质当前存在的一些不足,以及近年来所取得的改善研究成果。面向锂离子电池产业快速发展,指出可以掺杂改性和加工方法改善联合实施,以及结合机器学习等人工智能手段,来优化改善方案,以促进全固态锂离子电池的产业化。  相似文献   

8.
使用固体电解质的固态锂电池在安全性和循环性等方面具有明显优势,已成为锂电池的重要研究方向。固体电解质类型众多,其中石榴石型固体电解质锆酸镧锂(Li_7La_3Zr_2O_(12))具有与金属锂接触稳定、电化学性能稳定等特点,在固态锂电池领域具有潜在的研究价值。综述了固体电解质Li_7La_3Zr_2O_(12)的掺杂改性,如Li位、La位、Zr位以及双位的掺杂改性,介绍了Li_7La_3Zr_2O_(12)在锂硫电池中的应用,指出了该材料面临的挑战并对其发展前景进行了展望。  相似文献   

9.
全固态薄膜锂电池(TFLB)是理想的微电子系统电源.目前报道的固态非晶电解质存在离子电导率偏低的问题,限制了TFLB性能的提升.本工作采用磁控溅射法制备了一种新型非晶锂硅氧氮(LiSiON)薄膜用作TFLB的固态电解质.结果表明,优化制备条件后的LiSiON薄膜具有6.3×10–6 S·cm–1的高离子电导率以及超过5...  相似文献   

10.
辛玉池 《功能材料》2021,52(4):4018-4022
以共聚物PEDOT-co-PEG作为锂金属阳极的表面改性层,采用磷酸铁锂复合阳极和“石榴石型”物质以及聚合氧乙烷聚合物组成的固体电解质制备了全固态锂离子电池。采用SEM分析了锂金属充电-放电反复操作后的形态学改变;采用电化学组抗谱试验研究了改性后的锂金属以及复合固体电解质接触面的稳定性并对全固态锂离子电池的充电-放电性能和界面稳定性进行了研究。结果表明,未改性的锂金属在固态电池充电-放电过程中会生成锂枝晶,从而导致全固态锂离子电池的高电流密度容量快速衰变;“石榴石型”物质以及聚合氧乙烷聚合物组成的固体电解质与改性后的金属锂具有良好的接触面,从而扼制锂枝晶的形成,提高全固态锂离子电池的机械性能;在PEDOT-co-PEG共聚物改性锂金属后,全固态锂离子电池的平稳性显著提高,且容量减弱放缓。  相似文献   

11.
目前锂离子电池由于使用液态电解液面临着诸多问题,如工作温度范围窄、热稳定性差、容易泄露和生成锂枝晶等。发展全固态锂电池是提升电池能量密度和安全性的可行途径之一,而作为锂电池材料研究热点的有机-无机复合固态电解质,由于其兼具有机物和无机物的优点,有望运用于下一代全固态锂电池之中。本文首先概述了固态电解质的种类及传导机制,而后详细阐述了有机-无机复合固态电解质中聚合物基质和锂盐的选择以及不同维度无机填料对电解质性能尤其是力学性能的影响,最后提出了有机-无机复合固态电解质的研究总结与展望。  相似文献   

12.
由于锂金属负极的理论比容量和固态电解质的安全性高,全固态锂硫电池越来越受到研究者的青睐.与液态锂硫电池相比,全固态锂硫电池最大的不同在于使用固态电解质替换了液态电解质,且固态电解质材料不可燃,因此有着更高的安全性.此外,经过优化处理后的固态电解质有着足够的机械强度,可以有效抑制锂枝晶的产生.同时在产品的制备和运输方面,全固态电池也有着更大的优势.然而,全固态电池中存在着大量的固固界面,这些固固界面会导致在循环过程中产生界面电阻、体积畸变等一系列问题,会制约全固态锂硫电池的商业应用.因此,近年来学者们对固固界面进行了广泛的研究,不断改进制备工艺,表征界面变化过程,并对离子迁移路径进行了模拟和验证.目前,全固态锂硫电池已经有部分投入了商业应用.全固态锂硫电池主要包括含硫正极、锂金属负极和固态电解质,而固态电解质主要分为无机固态电解质和有机固态电解质两大类.因此,对固态电解质界面的研究也可以分为两大类:一类是固态电解质内部界面,包括无机电解质与无机电解质之间的界面或者无机电解质与有机电解质之间的界面,该界面主要对离子电导率有着重要影响;另一类主要包括固态电解质与正负极之间的界面,对电池的化学稳定性、体积稳定性和离子电导率等均存在较大的影响.近年来,研究者发现通过改变混合方法、粒径、多孔基体和体积压力等能够有效改善界面.同时,随着表征技术的发展,越来越多的原位界面表征技术能够更加直观地展现界面的变化状态.本文系统性地阐述了全固态锂硫电池的内、外界面存在的问题和研究现状,并探讨了全固态锂硫电池未来的发展趋势和研究重点,以期为制备稳定、高性能的全固态锂硫电池提供参考.  相似文献   

13.
全固态锂离子电池相较于液态电池而言,其能量密度更高,安全性更好,符合未来锂离子电池的发展方向,而固体电解质是该类型电池的关键组件。其中,石榴石型电解质锂镧锆氧(Li7La3Zr2O12,LLZO)因具有较高的锂离子电导率及与金属锂的良好兼容性,有望成为有机电解液的替代品。本文综述了该类型固体电解质的离子迁移机理,以及不同掺杂位点及掺杂剂类型对结构和电性能的影响,特别介绍了现阶段石榴石型固体电解质的致密化技术及机理,调研了LLZO界面改性方面的进展,对石榴石型固体电解质在锂离子电池中的应用进行展望。  相似文献   

14.
锂磷氧氮电解质在无机薄膜锂电池中的应用   总被引:1,自引:0,他引:1  
锂磷氧氮(LiPON,lithium phosphorous oxynitride)薄膜具有较高的离子电导率,极低的电子电导率,很宽的电化学稳定窗口等优点而成为全固态无机薄膜锂电池首选的电解质材料.简要介绍了LiPON薄膜的特性与制备方法,综述了国内外LiPON薄膜为电解质的薄膜锂电池的研究情况,并简要评述了目前薄膜锂电池制备中遇到的困难和今后的研究方向.  相似文献   

15.
固态聚合物电解质具有柔韧性好和易于加工的优势,可制备各种形状的固态锂电池,杜绝漏液问题。但固态聚合物电解质存在离子电导率低以及对锂金属负极不稳定等问题。本研究以纳米金属–有机框架材料UiO-66为聚合物电解质的填料,用于改善电解质的性能。UiO-66与聚氧化乙烯(poly(ethylene oxide), PEO)链上醚基的氧原子的配位作用以及与锂盐中阴离子的相互作用,可显著提高聚合物电解质的离子电导率(25℃,3.0×10–5 S/cm;60℃,5.8×10–4 S/cm),并将锂离子迁移数提高至0.36,电化学窗口拓宽至4.9V。此外,制备的PEO基固态电解质对金属锂具有良好的稳定性,对称电池在60℃、0.15mA·cm–2电流密度下可稳定循环1000h,锂电池的电化学性能得到显著改善。  相似文献   

16.
固态聚合物电解质因其质量轻、柔性好,且与电极材料接触良好、界面阻抗小,成为开发新一代高能量密度、高安全性乃至高柔韧性电化学器件的潜在材料,近年来获得了广泛关注。但因其离子电导率低、力学性能差等缺陷也成为限制其进一步商业化的关键问题。通过交联、共混、共聚等手段组成聚合物的复合体系有可能很好地解决这些问题,因此本文首先对聚合物中的离子导电机理进行了简要介绍,旨在从原理的角度阐释上述问题的解决策略;随后综述了近年来多种聚合物基复合电解质在电化学器件中的应用以及改性策略。最后对复合固态聚合物电解质目前面临的基础研究和实际应用问题进行了讨论,给出了解决这些问题的建议,以期为新型聚合物复合固态电解质的设计与制备提供新思路。  相似文献   

17.
目前钠离子电池采用的有机电解液存在易燃易爆等安全隐患,迫切需要开发高性能的固体电解质材料.其中NASICON型Na3Zr2Si2PO12电解质具有宽电化学窗口、高机械强度、对空气稳定、高离子电导率等优点,应用前景广阔.但已有研究的陶瓷生坯由于黏结剂包覆不均匀导致生坯内部气孔较多,难以烧成高致密、高离子电导的陶瓷电解质....  相似文献   

18.
彭程 《材料导报》2005,19(Z2):242-245
从萤石结构型氧化物和钙钛矿结构型氧化物两个方面综述了固体氧化物燃料电池(SOFC)中电解质的研究进展.有关研究表明,掺杂剂的组成和掺杂量以及不同氧化物的结构对固体电解质的电导率和稳定性有着直接的影响.尽管目前已经进行了大量的关于固体电解质电导率促进作用机理的研究工作,但还未形成共识.同时,LaGaO3基钙钛矿型氧化物固体电解质具有广阔的应用前景.  相似文献   

19.
固体电解质是发展高安全、高能量密度全固态锂电池的重要材料基础。由聚合物相与无机相复合形成的聚合物复合固体电解质,兼具聚合物轻质、柔性,以及无机材料高强度、高稳定性等优势,是最具应用潜力的固体电解质材料。目前,制约聚合物复合固体电解质实际应用的主要瓶颈问题为其室温离子电导率较低。综述了目前关于聚合物复合固体电解质离子传导机制的科学认识以及提升其离子电导率的方法,分析了先进表征工具在揭示聚合物复合固体电解质离子传导机制方面的应用潜力,并展望了聚合物复合固体电解质未来的发展方向和工作重点。  相似文献   

20.
无机固体电解质由于其安全性能高,机械强度大等特点在锂离子电池行业潜力巨大,其中NASICON型无机锂离子电解质因电导率较高、稳定性好、种类繁多的优势备受研究者关注。主要从NASICON型锂离子电解质材料的晶体结构、制备工艺和掺杂改性方面综述了其目前的研究进展,对其未来的发展做出展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号