首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为解决多场景复杂海况背景水面小目标检测存在的可利用特征少、纹理信息弱等问题,提升无人艇的环境感知能力,本文提出一种融合注意力和多尺度特征的典型水面小目标检测算法。首先,在网络的深层使用空洞空间金字塔池化模块融合目标的全局先验信息。其次,通过注意融合模块自适应地增强目标浅层空间位置和深层语义信息特征,提高网络的特征表示能力。最后,通过多尺度特征融合实现高性能的目标检测。本文构建了典型水面小目标数据集,并基于无人艇开展了真实海况下水面小目标检测的算法验证。实验结果表明,该算法在无人艇NVIDIA平台检测速率达到17 FPS,能准确识别水面小目标,mIoU比原始特征金字塔网络算法提升7.58%,平均检测精度提升11.41%,达到82.36%。  相似文献   

2.
针对轨道入侵异物严重威胁行车安全,而基于广义深度学习的目标检测方法无法打破大数据驱动的训练壁垒、小样本目标检测方法在复杂轨道环境中对多尺度入侵异物检测能力差、鲁棒性低等问题,本文提出了一种高鲁棒性多尺度小样本轨道入侵异物检测模型。该模型采用元学习策略,通过多尺度小样本入侵异物特征提取模块增强模型对于不同尺度小样本异物特征的表达能力。使用轨道入侵异物元特征精准重加权模块对小样本异物的元特征进行精准优化。提出小样本轨道入侵异物检测优化模块进一步提升模型的检测性能。实验结果表明,该模型在7-way 30-shot的小样本轨道异物检测任务中的平均检测精度为81.8%,比FSRW高3.2%,更适合在实际轨道环境中检测多尺度小样本入侵异物。  相似文献   

3.
4.
遥感目标具有较大的尺度差异性,针对其在复杂背景干扰下易导致细粒度级别多尺度特征提取困难、预测部分有效表征较弱的问题,本文基于无锚框思想,提出一种多元特征提取与表征优化的遥感多尺度目标检测方法(Multivariate Feature extraction and Characterization optimization,MFC)。在特征提取部分,设计多元特征提取模块(Multivariate Feature Extraction,MFE)挖掘细粒度级别的多尺度特征,通过分组操作及跨组连接的方式扩大感受野、增强多个特征尺度的组合效应,并联合上下文信息进一步加强对小目标的关注;采用深层聚合结构对深浅层特征进行充分融合,以获得更全面的特征表达。在预测部分,提出一种表征优化策略(Characterization Optimization Strategy,COS),利用椭圆型映射进行标签优化以适应具有较大纵横比的遥感目标,设计坐标像素注意力组合关注多尺度目标通道、位置及像素信息,减少复杂背景干扰,使有效信息得以突出表征。在DIOR,HRRSD,RSOD数据集上进行消融及对比实验,实验结果表明...  相似文献   

5.
为提高红外图像弱小目标检测的准确率和实时性,在分析用于红外图像增强的分形参数K相关的多尺度分形特征(MFFK)基础上,提出了一种基于改进多尺度分形特征(IMFFK)的红外图像弱小目标检测算法。首先,将基于地毯覆盖法的分形维数计算公式代入MFFK计算公式,提出了一种改进多尺度分形特征(IMFFK)用于图像增强。其次,对IMFFK特征计算进行简化,采用自适应阈值分割得到感兴趣目标区域,提出了一种具有较高计算效率的红外图像弱小目标检测算法。最后,通过仿真图像分析了主要参数对图像增强和算法耗时的影响,采用红外真实图像进行了算法检测性能测试,并与当前基于局部对比度测度的目标检测算法进行了对比。实验结果表明,提出的算法虽然在一些检测场景具有较多虚警,但能同时适用于弱小目标和较大目标检测,且无论目标为亮目标或暗目标。提出算法对于低分辨率红外图像(320×240)检测接近30 frame/s。提出算法具有较强的适用性,能够检测出红外图像中具有较高局部对比度的目标。  相似文献   

6.
针对R-C3D行为检测网络特征提取冗余度高及边界定位不准确的问题,结合残差收缩结构和时空上下文,提出一种改进的行为检测网络(RS-STCBD)。首先,将收缩结构和软阈值化操作融入到3D-ResNet的残差模块中,设计通道自适应阈值的残差收缩单元(3D-RSST),并级联多个3D-RSST单元构建特征提取网络以消除行为特征中的噪声、背景等冗余信息;然后,在时序候选子网中嵌入多层卷积替代一次卷积,以增加时序侯选片段的时序维度感受野;最后,在行为分类子网引入非局部注意力机制,通过捕获优质行为时序片段间的远程依赖以获取动作时空上下文信息。在THUMOS14和ActivityNet1.2数据集上的实验结果表明:改进网络的mAP@0.5分别达到36.9%和41.6%,比R-C3D方法提升了8.0%和14.8%。基于改进网络的行为检测方法提高了动作边界定位精度和行为分类准确率,有利于改善自然场景下的人机交互质量。  相似文献   

7.
针对无人机视角下航拍图像小目标多且检测困难的问题,提出了一个位置敏感Transformer目标检测(PS-TOD)模型。设计了一个基于位置通道嵌入三维注意力(PCE3DA)的多尺度特征融合(MSFF)模块,即PCE3DA利用空间与通道信息的相互依赖关系生成三维注意力,用于加强模型对兴趣区域的特征表达能力,且基于它构造了一个自底向上的跨层MSFF方案,使得融合后的特征语义信息更加丰富;然后,设计了一种新的位置敏感自注意力(PSSA)机制,且以此构造位置敏感Transformer编-解码器,使模型在捕获图像全局上下文信息的长期依赖关系时,也可提高模型对目标的位置敏感能力。基于无人机航拍数据集VisDrone的对比实验结果表明,提出模型的AP达到28.8%,与基线模型(DETR)相比提高了4.1%。该模型在复杂背景下能对无人机航拍图像进行精确的目标检测,且改善小目标的检测效果。  相似文献   

8.
针对暗弱环境下小天体表面岩石轮廓特征不明显及岩石尺寸小而造成的难检测问题,提出了一种小天体表面着陆区岩 石目标检测方法及模型。 将多头自注意力机制融入 YOLOv8x 框架,用于提高模型获取图片全局视野的能力,增强模型对深空 环境中不同光照条件下岩石特征的自适应性;在此基础上增加小目标检测层,用于提升模型对小尺寸岩石的关注度,增强模型 对不同尺寸岩石的自适应性。 对比实验结果表明,方法相较于改进前算法,岩石检测准确率、召回率和平均检测精度分别提升 了 6. 4% 、3% 、5% ,与其他主流目标检测算法相比,指标也得到明显提升。 该方法为暗弱环境下小天体表面着陆区岩石的自主 识别提供了理论和技术基础。  相似文献   

9.
为解决遥感图像地面弱小目标检测中弱小目标信息量少、信息真假混杂的难题,本文提出一种融合多层级特征的遥感图像地面弱小目标检测算法CC-YOLO。该算法首先利用深度卷积神经网络逐级对目标图像进行特征提取,得到高低层特征空间金字塔图;然后,对空间金字塔图进行跨层级通道特征融合,结合新增的位置注意力机制CA,分别沿两个空间方向聚合特征,保留弱小目标精确的位置信息;最后,在聚合后生成的双支路特征图上进行端到端的目标检测,联合多通道检测信息输出检测结果。为解决算法实验中图像数据匮乏的问题,构建了遥感图像地面弱小目标数据集GDSTD。实验结果表明,算法AP0.5∶0.95达到42.3%,AP0.5达到94.6%,检测速率FPS达到58.8帧/s,具有一定的鲁棒性和实时性。  相似文献   

10.
为了提高在如无人机航拍图像等背景复杂情况下的小目标检测能力,本文在YOLOv4网络的基础上,提出了一种引入注意力机制的轻量级小目标检测网络.首先,在通道注意力机制中加入多尺度融合模块并构造多方法特征提取器,再将所设计的通道注意力模块嵌入到YOLOv4特征提取网络,增强网络对于图像感兴趣区域的关注能力;接着,改进YOLO...  相似文献   

11.
异物入限是导致铁路安全事故频发的主要原因之一,传统深度学习需要大量训练样本进行网络训练,但铁路场景中入侵样本很少且难于获取。本文提出了基于改进度量元学习的铁路小样本异物入侵检测方法。为了让入侵目标的特征表征在分类时发挥更大作用,提出了基于通道注意力机制的特征提取网络;为解决样本数量不足时个别样本在特征空间中产生偏离的问题,提出了一种基于类中心微调的网络用于类别中心的修正;同时,基于center loss与交叉熵构建了中心相关损失函数用于小样本网络训练,提升特征空间中同类别特征分布的紧凑性。在公共数据集miniImageNet上与经典小样本学习模型中最优的相比,本文算法在5-way 5-shot设置下图像分类准确率提升了7.31%。在铁路入侵小样本数据集的5-way 5-shot消融实验表明:本文提出的通道注意力机制(Channel Attention Mechanism,CAM)和中心相关损失函数分别提升0.86%和1.91%的检测精度;提出的类中心微调和预训练方法对检测精度的提升效果更明显,分别达到3.05%和6.70%,上述模块综合应用的提升效果达到了7.90%。  相似文献   

12.
为了解决由LiDAR点云稀疏性和语义信息不足造成的远小困难物体检测困难的问题,提出了一种多模态数据自适应性融合的3D目标检测网络,充分融合了体素的多邻域上下文信息和图片多层语义信息。首先,设计了一种更适用于检测任务的改进残差网络,提取图片多层语义特征的同时,在低分辨率特征图中有效保留了远小物体的结构细节信息。每个特征图进一步通过来自所有后续特征图的语义信息进行语义增强。其次,提取具有不同感受野大小的多邻域上下文信息,弥补远小物体点云信息不足的缺陷,加强体素特征的结构信息和语义信息,以提高体素特征对物体空间结构和语义信息的表征能力及特征鲁棒性。最后,提出了一种多模态特征自适应融合策略,通过可学习权重,根据不同模态特征对检测任务的贡献程度进行自适应性融合。此外,体素注意力根据融合特征进一步加强有效目标对象的特征表达。在KITTI数据集上的实验结果表明,本方法以明显的优势优于VoxelNet,即在中等难度和困难难度下AP分别提高8.78%和5.49%。同时,与许多主流的多模态方法相比,本方法在远小困难物体的检测性能上具有更高的检测性能,即在中等和困难难度级别上,AP的性能比MVX-Net AP均高出1%。  相似文献   

13.
为了提升无人机对地伪装目标探测能力,本文提出了多尺度互交叉注意力改进的单机对地目标检测定位方法。 首先, 设计了一种多尺度互交叉注意力模块,在原始多尺度金字塔基础上,进行互交叉注意力增强,提升对伪装目标的边界区分能力; 其次,搭建了开源无人机目标检测定位系统,通过融合无人机载定位模块、惯导传感器和光电吊舱等数据,在获取目标图像位置 后对其空间位置进行解算;最后,自行构建了丛林伪装数据集进行了相关实验验证。 实验结果表明,该方法在典型伪装场景下 对地目标平均检测精度(mAP)为 70. 2% ,相较于改进前提升 5. 7% ,且能有效输出目标与无人机(UAV)的方位距离,算法平均 运行效率可达 29. 4 fps,满足 UAV 对地目标检测定位的实时性需求。  相似文献   

14.
花椒视觉采摘系统需要检测当前场景中的近景花椒。针对现有检测网络容易混淆相似外观的近景和远景花椒,难以准确检测近景花椒的问题,利用近景花椒与附近枝干的共生现象来区分近/远景花椒,提出基于多任务上下文增强的花椒检测模型。将枝干分割任务被加入目标检测网络中,用于引导全局特征同时表达花椒外观信息和枝干上下文信息;再为每个任务设计注意力模块调整全局特征,避免任务间的干扰。真实花椒数据实验结果表明:所提模型的精度相比YOLOv4、RetinaNet和SSD分别提高12.28%、17.23%和30.17%。该模型能够大幅度减少远景花椒误检,准确检测近景花椒。  相似文献   

15.
多传声器小波多尺度信息融合滤波算法   总被引:2,自引:0,他引:2  
为了滤掉信号采集过程中存在的环境噪声和信道噪声,提出一种基于小波多尺度信息融合和三角时延矢量误差的信号滤波算法。基于多传声器信号时延估计特性,提出时延矢量封闭准则。首先将多传声器同步采集所得信号进行小波多尺度分解,得到多尺度小波细节系数和近似系数,然后根据时延矢量封闭准则求取各层小波系数时延差,结合信息融合理论,提出一种三角时延矢量误差,由多传声器综合支持度获得时延阈值,将其作用于三角时延矢量误差,得到各层小波系数的权重,最后对小波系数重构得到降噪后的信号。实验表明,此滤波算法不仅滤掉了信号中的噪声成分,还优化了传声器资源的配置,既保留了高支持度传声器信号特性,还改善和提高了低支持度传声器信号质量,与小波分层阈值和全局阈值滤波算法相比充分体现出该算法的有效性。  相似文献   

16.
丁鹏  张叶  贾平  常旭岭 《光学精密工程》2017,25(9):2461-2468
为了精确地检测到舰船目标,提出了一种基于多特征、多尺度视觉显著性的海面舰船目标检测方法。该方法首先利用多尺度自适应的顶帽算法抑制云层、油污的干扰,然后提取双颜色空间特征以及边缘特征构成双四元数图像进行舰船显著性检测。由于充分利用了双四元数图像,故可对多个特征尺度进行处理,并保证不同尺度特征之间关联性。该方法还利用人眼对不同用大小的图像关注目标不同的特点对图像进行上下采样以避免漏检和检测重叠。在得到显著图后利用自适应图像分割(OTSU)算法确定舰船所在的区域,并在原图上标定、提取舰船目标。在多种海面情况下进行了实验分析,结果表明:该算法可以排除多种干扰,精确地检测到舰船目标,真正率达97.73%,虚警率低至3.37%,相较于他频域显著性检测算法在舰船检测方面有明显的优势。  相似文献   

17.
一种基于时空信息的多目标检测新算法   总被引:4,自引:0,他引:4  
运动目标检测是计算机视觉中进行信息提取的关键技术之一.为了克服传统帧间差分法检测出的目标不完整的缺点,提出了一种基于时空信息的视频图像中多目标检测新算法.该算法将帧间差分得到的图像序列的时间信息和帧间边缘差分得到的图像空间信息结合起来检测图像中的运动目标,同时利用形态学闭运算和近区域合并方法进一步强化图像中的空间信息,利用小区域去除的方法去除图像中的噪声影响.最后通过3组实验对其有效性进行了验证,实验结果证明,其检测效果与传统算法相比有较大改善.  相似文献   

18.
为了解决编码器-解码器网络结构在目标提取中抑制无关语义、跨越语义鸿沟等问题,以获取更高精度,采用UNet作为提取特征的主干网络;为了减轻浅层特征与深层特征语义的差异,设计一种融合注意力感知的多尺度语义池化模块(Channel-Spatial-Pyramid, CSP),替代早期层中的跳跃链接。CSP模块从空间与通道两个层面强调更有意义的语义信息,通过4个不同池化核的并行分支提取不同尺度特征,聚合所有分支结果与后期层特征拼接。实验结果表明,CSP-Net在彩色眼底图像视盘分割中的Dice指数可达99.6%,视杯分割结果的Dice指数为92.1%,相比现有算法均有提高。所提出的CSP-Net对于眼底图像中的微小目标提取的有效性及抗干扰性较高,可为青光眼筛查与诊断临床提借鉴。  相似文献   

19.
光学遥感图像海面舰船目标检测易受云雾,海岛,海杂波等复杂背景的干扰。本文提出了一种适用于复杂背景的舰船目标检测方法。首先为了克服目标尺度多变问题,利用视觉显著性生成多尺度显著图,然后使用基尼指数自适应选择最优显著图。考虑到全局阈值分割算法带来的漏检测问题,提出一种新的方案来分离目标和背景像素点。利用图像膨胀原理获取显著图的局部极大值点,然后使用k-means算法判断极大值点属于目标像素点还是背景像素点。接着对目标点邻近区域进行精细分割。最后引入基于径向梯度变换的旋转不变特征来进一步剔除虚警。实验结果表明,该算法能够成功检测出不同尺寸和方向的舰船目标,有效克服复杂背景的干扰。算法检测正确率93%,虚警率4%,优于其他舰船检测方法。  相似文献   

20.
大数据多尺度状态检测方法在磨损检测的应用   总被引:1,自引:0,他引:1  
随着生产过程自动化、信息化、规模化发展,以大数据为基础的信息处理技术得到广泛应用.对大数据进行多尺度深层次的挖掘,可以为状态检测提供技术依据,有效提高设备的可靠性.针对数据量巨大、干扰源众多、信息密度低、复杂度高的对象提出一种基于大数据的状态检测方法,利用数据融合、信息粒化以及多尺度分析,提取对象状态参数.通过对某机组磨煤机磨辊磨损的状态检测的实例分析验证了算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号