首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
锂离子电池中电解液与石墨类负极活性材料的相容性   总被引:2,自引:2,他引:2  
选择了一种具有良好贮锂结构的人造石墨试样作为锂离子电池负极活性材料,考察了它在六种不同电解液中的恒电流充、放电性能和循环伏安特性,采用傅立叶变换红外光谱分析了不同电解液在试样颗粒表面发生还原反应时所形成的固体电解质中间相膜的成份和含量。据此得出的结论是:电解液与石墨类负极活性材料能否相容的问题,实质上就是所选定的电解液能否与其颗粒表面发生缓和的还原反应、生成薄而致密的只允许锂离子通过的固体电解质中间相膜。  相似文献   

2.
采用介孔二氧化硅MCM-41作模板和硅源, 合成了具有介孔结构的可充镁电池正极材料硅酸锰镁. 分别用XRD、SEM、TEM和氮气吸脱附测试研究了合成材料的介孔结构, 并通过循环伏安、恒电流充放电测试比较了介孔与无孔硅酸锰镁材料的电化学性能. 由于介孔材料活性表面较大, 可增加电解液与活性材料的接触, 使材料具有较多的电化学反应位. 因而, 与相应的无孔材料相比, 具有介孔结构的硅酸锰镁材料呈现出较低的充放电极化、较大的放电容量和较高的放电电压平台. 在0.25 mol/L Mg(AlCl2EtBu)2/THF 电解液中, 0.2 C(约62.8 mA/g)充放电速率下, 介孔硅酸锰镁材料首次放电容量可达到241.8 mAh/g, 放电平台为1.65 V ( vs Mg/Mg2+). 设计具有介孔结构的材料为提高可充镁电池正极的电化学性能提供了一条有效的途径.  相似文献   

3.
镁金属电池因为镁金属负极的高体积比容量(3833 mAh/cm3)和高安全性而日益受到关注。然而, Mg2+引起的极化效应抑制了Mg2+在固相中的扩散, 限制了镁金属电池的比容量。锂镁双盐电解液利用Li+代替Mg2+驱动正极反应, 能够绕开Mg2+在固相中扩散缓慢的问题。本工作研究了过渡金属硫化物CoS2在不同锂镁混合电解液中的电化学性能, 并分析了锂盐浓度和充放电电压区间对其转换反应和循环稳定性的影响。添加锂盐的策略提高了CoS2基镁金属电池的转换反应动力学, 当充电电位提高至2.75 V时, Mg-CoS2电池在LiCl-APC电解液中的循环稳定性得到显著提高, 在循环150次后, 其比容量仍能维持在275 mAh/g, 远高于在2.0 V截止电压条件下的33 mAh/g。电池容量衰减与CoS2正极在2.0 V充电电位下Co3S4的不可逆生成有关, 其长期循环中伴随的Co和S元素溶解加剧了容量的不可逆损失。本工作为过渡金属硫族化合物在转换反应型镁电池中的应用提供了一种激活策略。  相似文献   

4.
随着二次电池的逐渐发展,金属锂为负极的电池体系以其优异的能量密度脱颖而出,但其稳定性和安全性较差的问题亟待解决。电解液作为锂离子在正负极之间传输的载体,决定了锂离子的液相传输过程和迁移速率,同时还会与金属锂负极发生界面反应生成固体电解质界面膜(SEI),电解液的组分变化会极大程度上影响SEI膜的组成和结构。电解液改性能够有效调控金属锂沉积过程,是改善金属锂负极电化学性能的重要途径。本文从电解液对锂离子沉积的影响因素出发,分析了液相传质、SEI膜的形成、电荷转移等基本过程对锂离子沉积的调控机理,总结归纳了溶剂分子、锂盐浓度、添加剂等对金属锂沉积过程的影响,介绍了溶剂混用、复合锂盐、局部高浓度电解液、双功能添加剂等电解液改性促进均匀锂沉积的方法,分析了各种改性方法对实现均匀锂沉积的作用机理,并展望了这些方法的发展趋势。  相似文献   

5.
镁电池的研究进展   总被引:1,自引:0,他引:1  
镁电池具有高功率、高能量密度、低成本、无毒害等特点.介绍了镁电池的类型和工作原理,综述了镁合金负极、镁电池正极、电解液等方面的研究进展,指出镁负极中添加稀土及Ga等合金元素可改善电池性能,正极材料采用有机化合物可使电池放电平稳、电解液以Mg(ClO4)2最有前途,讨论了镁电池的发展方向.  相似文献   

6.
高荷电存储寿命对锂离子电池的使用性能具有重要影响, 但是相关研究却较为缺乏。本研究通过高温加速实验, 研究了LiNi0.8Co0.15Al0.05O2(NCA)/石墨锂离子电池在55 ℃下的存储寿命, 分析了正负极材料在电池寿命终点时的电化学性能和界面变化。研究结果表明, 在55 ℃、高荷电状态下NCA/石墨锂离子电池的存储寿命约为90 d。在寿命终点时, 正负极活性材料的容量有一定下降, 但不是电池容量衰减的主要原因。界面分析表明, 存储后负极表面固体电解质界面(SEI)膜增长明显, 而正极表面固体电解质界面(PEI)膜无明显变化。SEI膜的增长主要是由于电解液溶剂和锂反应, 造成石墨内锂损失, 使电池内可循环锂减少, 这是NCA/石墨电池在存储过程中容量损失的主要原因。  相似文献   

7.
锂离子电池作为新一代绿色能量储存和转换装置,具有广阔的应用前景和巨大的经济价值。负极材料是锂离子电池的核心部件之一,其结构和性质对电池的性能起着关键性作用。在众多碳基负极材料中,石墨类材料是目前商业化锂离子电池中应用最广的负极材料。但石墨类负极材料存在可逆容量较低、离子扩散动力学和电解液兼容性较差、体积膨胀率较高等问题,导致锂离子电池的能量密度、大电流倍率性能及循环稳定性等受到严重限制。尤其是近年来新能源汽车对续航里程和快速充放电能力的需求不断提高,使得石墨类负极材料在能量密度与功率密度方面的缺陷日渐凸显。为改善现有石墨类负极材料某些方面的缺陷,提高其综合性能,研究者们主要从石墨类负极材料的表面包覆、化学修饰、元素掺杂和微晶结构优化等角度进行了广泛探究,并取得了丰硕的成果。主要体现在:(1)表面包覆,构筑核壳结构,改善负极材料与电解液的兼容性;(2)化学修饰,调控界面化学性质,增强负极材料表面SEI膜(电极/电解液界面膜)的稳定性;(3)元素掺杂,调节石墨微晶表面的电子状态和导电性,强化负极材料的嵌-脱锂行为;(4)微晶结构优化,修筑三维(3D)梯级纳米孔道,改善锂离子的传输路径,提高负极材料的储能容量和倍率性能。本文简要介绍了锂离子电池的工作原理和其对石墨类负极材料的要求,重点综述了石墨类负极材料在结构调控与表面改性等方面的最新研究进展,并对石墨类负极材料的未来发展趋势进行了展望,以期为高性能锂离子电池用新型碳基负极材料的研发与推广应用提供参考。  相似文献   

8.
非化学计量的氧化硅(SiOx,0x体积变化.h-SiOx@Co@N-CNTs作为锂离子电池负极材料,具有优异的循环稳定性和高倍率性能.以0.2 A g-1的电流密度循环370次,容量为701 mAh g-1,容量保持率为100%.另外,在1.0 A g-1电流密度下循环500圈,容量没有衰减.结果表明,所合成的锂离子电池结构具有一定的优越性,对材料的优化也有一定的启发作用.  相似文献   

9.
锂金属电池被认为是最具潜力的高能量密度储能器件之一,但是锂金属电池负极低库仑效率及不可控的枝晶生长等问题阻碍了其商业化进程.在锂金属电池中,电解液会直接参与固态电解质界面膜(SEI)的形成,对锂金属负极的库仑效率、枝晶生长等产生重要影响.传统LiPF6基酯类电解液中,锂金属库仑效率低,且锂枝晶现象严重.近年来通过电解液添加剂、溶剂、锂盐以及锂盐浓度等途径调控电解液化学,在锂金属负极保护上取得了显著效果.例如,采用与锂金属负极兼容性更佳的醚类溶剂,可以降低电解液与锂金属的反应性;采用多种添加剂与新型锂盐复配可以有效抑制锂枝晶的形成;采用高浓度锂盐电解液,可以形成稳定SEI膜等.本文综述了锂枝晶的生长原理以及通过溶剂、锂盐、添加剂和高浓度电解液等策略调控电解液化学保护锂金属电池负极的研究现状,总结了各种途径的优势及局限性.并对锂金属电池电解液的发展提出了新的见解,以激发新的策略面对锂金属电池后续的挑战.  相似文献   

10.
对于全固态锂离子电池,固态电解质是制约电池性能的最重要因素之一。以四氢呋喃为反应溶剂,以P2S5,Li2S和LiI为反应原材料,采用湿化学法及后续真空热反应方法成功制备出Li7P2S8I固态电解质。通过同步热分析仪、粉末X射线衍射、拉曼光谱、扫描电子显微镜和能谱仪对所制备电解质样品的形貌、元素分布和物相组成进行表征分析。利用交流阻抗测试、循环伏安法和直流极化等手段研究了Li7P2S8I固态电解质的电化学性能。不同温度对比分析结果表明Li7P2S8I固态电解质的最佳热处理温度为230℃,在此条件下的制备产物具有纳米多孔结构且组成元素分布均匀。电化学测试表明该电解质在25℃下的离子电导率为1.63×10-4 S·cm-1,活化能为0.388 eV,电化学窗口达到5 V,锂离子迁移数高于0.999。该电解质与锂金属组装的对称电池可充放电稳定循环>262次(525 h),表明以此方法制备的Li7P2S8I固态电解质与金属锂负极具有优异的电化学稳定性和化学相容性。  相似文献   

11.
锂离子电池作为一种绿色可充电电池, 具有较高的能量密度及功率密度, 但市售锂离子电池主要以有机物为电解液, 当电池过充或短路时存在一定的燃烧及爆炸风险。为应对此问题, 水系锂离子电池逐渐走进人们的视野, 它具有清洁环保、安全性能高等优点, 其工作电压为1.5~2.0 V, 主要应用于储能领域。考虑到水系电池的析氢析氧反应, 常规负极材料无法应用于水系锂离子电池, 因此水系锂离子电池的研发关键在于负极材料的选取。LiTi2(PO4)3具有开放的三维通道以及合适的嵌锂电位, 可以作为水系锂离子电池的负极材料。LiTi2(PO4)3的合成方法主要有高温固相法、溶胶-凝胶法和水热法等。为进一步提高LiTi2(PO4)3的电化学性能, 可以采用颗粒纳米化、形貌控制、元素掺杂及碳包覆等方式进行改性。本文从合成方法及改性手段的角度, 对近年来国内外水系锂离子电池负极材料LiTi2(PO4)3的研究进行综述, 并对LiTi2(PO4)3负极材料的发展前景做出展望。  相似文献   

12.
硅(Si)负极在充放电过程中巨大的体积变化会导致固态电解质中间相(SEI)破裂和硅颗粒粉化, 进而造成容量快速衰减。本研究报道了一种利用Li6.4La3Zr1.4Ta0.6O12(LLZTO)固体电解质调节Si/C负极表面SEI成分的策略。将LLZTO层均匀地涂覆在商用化聚丙烯(PP)隔膜表面, 不仅提高了电解液对隔膜的润湿性, 均匀化锂离子通量, 并且增大了SEI中无机组分的比例, 从而增强Si/C负极的界面稳定性。得益于上述优势, 使用LLZTO修饰的PP隔膜所组装的锂离子电池表现出更为优异的循环稳定性和倍率性能。Li-Si/C半电池的可逆容量为876 mAh·g-1, 在0.3C (1C=1.5 A·g-1)的倍率下, 200次循环的容量保持率为81%; 而LFP-Si/C全电池的比容量为125 mAh·g-1, 在0.3C (1C=170 mA·g-1)的倍率下循环100次后容量保持率为91.8%。该工作中LLZTO固体电解质调节了Si/C负极表面SEI成分, 为开发高性能硅基锂离子电池提供了新思路。  相似文献   

13.
树脂炭包覆石墨作为锂离子电池负电极的研究   总被引:9,自引:0,他引:9  
以液相浸渍法在天然鳞片石墨(NFG)表面包覆酚醛树脂后进行热处理,制备了酚醛树脂炭包覆石墨材料.将这种材料作为锂离子电池的负极材料,运用恒电流充、放电法,粉末微电极循环伏安法考察了其在1M LiPF/EC+DEC(1:1)电解液中的充、放电性能,并分析了工艺条件中不同热处理温度(HTT)对其充、放电性能的影响.实验结果表明,经HTT=900℃热处理的酚醛树脂炭包覆石墨材料的第三次稳定放电容量(D)为 213.75mAh/g,第三次充、放电效率(η)为88.69%;并且循环寿命较长,可作为高性能锂离子电池的负极材料.  相似文献   

14.
三元锂离子动力电池的开发和应用受制于高温高电压条件下的容量衰减和电池产气鼓胀等技术难题。解决这些问题一方面要注重电极材料改性和电池设计, 另一方面还依赖于电解液的技术进步。本研究报道了四乙烯基硅烷(Tetravinylsilane, TVS)作为LiNi0.6Co0.2Mn0.2O2(NCM622)/石墨软包电池的电解液添加剂, 可以显著改善电池的高温(45~60 ℃) 高电压(4.4 V)性能, 包括存储和循环性能。结果表明, 电解液中含有质量分数0.5% TVS的电池在2.8~4.4 V区间, 1C (1C=1.1 Ah)倍率下循环400次后的容量保持率达到92%, 而电解液中未添加TVS的软包电池仅为82%。进一步研究表明, 一方面TVS高电压下优先被氧化, 可以在NCM622颗粒表面形成耐高温的CEI膜, 有效抑制NCM622颗粒内部裂纹和过渡金属离子溶出; 另一方面, TVS在低电位下还可以优先被还原, 在石墨负极表面聚合形成稳定的SEI膜, 抑制电解液与负极之间的副反应。  相似文献   

15.
固态聚合物电解质具有柔韧性好和易于加工的优势,可制备各种形状的固态锂电池,杜绝漏液问题。但固态聚合物电解质存在离子电导率低以及对锂金属负极不稳定等问题。本研究以纳米金属–有机框架材料UiO-66为聚合物电解质的填料,用于改善电解质的性能。UiO-66与聚氧化乙烯(poly(ethylene oxide), PEO)链上醚基的氧原子的配位作用以及与锂盐中阴离子的相互作用,可显著提高聚合物电解质的离子电导率(25℃,3.0×10–5 S/cm;60℃,5.8×10–4 S/cm),并将锂离子迁移数提高至0.36,电化学窗口拓宽至4.9V。此外,制备的PEO基固态电解质对金属锂具有良好的稳定性,对称电池在60℃、0.15mA·cm–2电流密度下可稳定循环1000h,锂电池的电化学性能得到显著改善。  相似文献   

16.
锂离子电池高容量硅负极嵌锂过程中的表面成膜研究   总被引:1,自引:0,他引:1  
采用交流阻抗法、EDS与XPS成分分析对锂离子电池高容量硅负极在首次嵌锂过程中的表面成膜行为进行了研究, 并对膜组分进行了详细测试与分析. 交流阻抗分析发现硅负极的表面成膜现象出现在较低的嵌锂电位下, 膜厚随着嵌锂过程的进行而增加, 其组分以LiF和Li2CO3为主. 通过Ar离子流对硅负极表面的深度刻蚀的XPS分析发现, 其表面的膜层为非均质层, 暴露于电解液中一侧的膜层组分中碳酸盐含量较高, 而随着深度的增加, LiF的相对含量增加, 靠近电极一侧的膜层可能存在着少量硅的氧化物及其与电解液的反应产物. 少量Si由于不可逆反应形成的化合物也存在于SEI膜的膜层中.  相似文献   

17.
金属锂负极是锂电池极具发展潜力的高能二次电池负极材料,但是锂枝晶生长、界面不稳定、循环稳定性差和体积膨胀大等问题限制了锂负极的应用。针对枝晶生长和体积膨胀的问题,本工作通过模板法构筑了一种具有较大比表面积的半限域式层次孔炭(HPC)材料,HPC电极材料的高比表面积可降低局部电流密度,丰富的孔道结构可将锂限制在其内部沉积,从而达到抑制枝晶生长和缓解体积膨胀的目的。Li‖HPC电池在电流密度为1.0 mA·cm-2、沉积电量为1.0 mAh·cm-2条件下可以循环超过250周次,其库仑效率保持在97.6%。采用此负极与磷酸铁锂(LiFePO4)正极匹配制备的Li@HPC‖LiFePO4全电池,在0.5 C下循环100周次后的正极放电比容量为93.6 mAh·g-1,较相同条件下的Li@Cu‖LiFePO4全电池(60.8 mAh·g-1)提升了32.8 mAh·g-1。  相似文献   

18.
近年来,TiO2作为钠离子电池(NIB)负极材料,因其低成本和高稳定性等优势受到广泛关注。但受TiO2本征电子导电性的固有限制,使得TiO2作为NIB负极材料导电性较差,导致其容量和倍率等性能不理想。利用海藻酸钠与金属离子自主交联反应的特性,将反应产物在最佳温度下进行简单碳化,制备了具有分级多孔结构的TiO2/C复合材料,其中TiO2纳米颗粒均匀地分布在多孔互连的碳基体中,该结构提升了复合材料导电性的同时扩展了钠离子反应的附着位点。将TiO2/C复合材料用于NIB负极材料,在100 mA·g-1的电流密度下循环300圈后,电池可逆比容量维持在180.4 mAh·g-1;进一步,在更高的1000 mA·g-1电流密度下经过1000次循环后,电池可逆比容量维持在102.3 mAh·g-1,充分显示出TiO2/C复合材料作为NIB负极材料的应用潜能。  相似文献   

19.
锂离子电容器的负极多为发生电池型反应的材料,正极则多选用具有电容特性的材料,结合锂离子电池和电化学电容器各自的优点,具有能量密度高、功率密度高、使用寿命长等优势,是极具前景的储能器件,有望应用于新能源汽车等领域。然而锂离子电容器也存在发生电池型反应的负极与发生离子可逆吸附脱附的正极间动力学与比电容不匹配、使用过程中形成固态电解质膜、首次充放电不可逆容量损失高等问题,这限制了锂离子电容器进一步发展。为进一步提高锂离子电容器的使用性能,研究者们一直致力于开发新的电极材料。按照电容器负极发生反应的类型,将负极材料大致分为嵌入型、转化型、合金型三类并逐一介绍其研究进展。此外,简要总结了目前碳基正极材料研究的几个热点方向,展望了未来对锂离子电容器的进一步研究和应用。  相似文献   

20.
硅作为锂离子电池负极材料具有极高的比容量,被认为是最有应用潜力的下一代锂离子电池负极候选材料。本文系统总结了硅负极材料的电化学储锂特性和储锂机理,分析了硅负极材料存在的主要问题及原因。针对存在的问题,从嵌脱锂过程硅材料粉化调控、稳定固体电解质界面膜(SEI膜)的构建和硅材料导电性调变3方面对硅负极材料的电化学改性进展进行了评述,并指出了硅负极储锂材料今后的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号