首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的 利用光固化增材制造技术成形复杂形状陶瓷零件。方法 以光敏树脂和陶瓷粉体混合得到氧化铝和氧化硅陶瓷浆料,浆料固体含量体积分数均超过55%。采用基于数字光处理技术的光固化增材制造设备,设计了一种栅栏式刮刀,可实现打印过程中高固含量浆料的均匀涂层和搅拌。光源波长为405 nm,面光源像素尺寸为50 μm,最小分层厚度为10 μm。在5 mW/cm2光强下分层曝光,分析在不同粉体的浆料固化性能,得到陶瓷坯体,经过脱脂烧结,完成陶瓷成形。结果 氧化硅浆料的透光性明显强于氧化铝浆料,氧化铝浆料的临界曝光强度更容易引发固化反应,测试件最小壁厚为0.2 mm,最小可成形孔为0.1 mm,并对氧化铝齿轮、螺钉、镂空摆件及氧化硅陶瓷型芯等复杂结构的陶瓷零件进行了验证。结论 基于光固化成形的增材制造可以实现高精度的复杂陶瓷零件成形,对拓展陶瓷成形方法具有重要意义。  相似文献   

2.
金属玻璃(即非晶合金)具有较高的强度、硬度和耐磨性,优异的耐腐蚀性能等,目前已被广泛应用于制备棒球杆、传感器、电磁铁芯、变压器等。增材制造(即3D打印)技术集节约材料、可个性化定制复杂几何件优点于一身,现被广泛研究和应用。目前已掀起了3D打印金属玻璃的研究热潮。本文主要综述了3D打印金属玻璃的研究进展,在此基础上探讨了其存在的问题以及解决办法。采用优化的工艺参数和扫描策略可部分避免这些问题,对热影响区的温度分布与工艺参数之间的关系模拟研究是解决3D打印成形致密块体金属玻璃问题的关键。  相似文献   

3.
压电陶瓷是一种可以实现机械信号和电信号相互转换的功能陶瓷。由压电陶瓷与有机相构成的复合材料具有不同的宏观连接方式, 这不仅决定了压电器件广泛的应用场合, 而且推动了压电陶瓷材料和器件多样化的成型技术发展。与传统成型技术相比, 增材制造技术的最大优势在于无需模具即可实现外形复杂的小批量样品快速成型, 这与多样化的压电陶瓷及其器件研发需求十分契合, 同时因其样品后续加工量少、原材料利用率高、无需切削液的特点, 得到了学术界和工业界的广泛关注。在陶瓷材料增材制造领域, 功能陶瓷和器件的研究仍在增长期。本文从不同增材制造技术角度, 探讨和对比现阶段无铅和含铅压电陶瓷增材制造的发展历史、原料制备、外形设计、功能特性检测及试样的应用, 并根据现阶段各增材制造技术的优、劣势对其未来进行了展望。  相似文献   

4.
增材制造技术近年来取得了重大进展,金属增材制造可以三维成型精度高的复杂形状零件,在各行业的应用中具有独特优势。然而,增材制造金属零件成形时由于高温度梯度会引起复杂残余应力。简要分析了增材制造技术的特点,重点总结了激光选区熔化和电弧增材制造的工艺原理。在此基础上,详细综述了增材制造过程中残余应力的产生机制及测量方法,其中,温度梯度机制是解释残余应力产生机制最常用的方法。针对残余应力的测量,分别从无损检测和破坏性检测两方面进行归纳,最常用的破坏性检测残余应力的方法是轮廓法和钻孔法,而无损检测的方法是X射线衍射法。并且总结了残余应力的调控方法,包括工艺参数调控、预热缓冷及重熔调控、结构设计调控、辅助外场调控、后处理调控。最后简要总结增材制造金属结构件残余应力研究中亟待解决的问题,并展望了金属增材制造的发展方向。  相似文献   

5.
金属点阵多孔材料是一种具有复杂周期性结构的先进轻质多功能材料,由于其优异的比强度、吸声、降噪以及超材料等特性,近年来备受关注.而传统的制备工艺仅可以制造类点阵结构,难以生产复杂、精细的点阵结构,成为金属点阵多孔材料进一步应用的掣肘.近年来快速发展的增材制造(Additive manufacturing,AM)技术具有设计与制造自由度大、快速制造任意复杂几何形状零件的特点,可对金属点阵多孔材料进行微观、界观和宏观尺度晶格的多种组合进行调控,是金属点阵多孔材料制备技术的前沿.然而,增材制造金属点阵多孔材料存在残余应力大、表面粗糙度高以及局部应力集中等问题,导致其压缩脆性以及疲劳强度较低.因此,除了研究增材制造工艺参数对点阵结构性能的影响外,研究者们主要从拓扑优化以及后处理方面不断进行尝试,并获得了丰硕的成果.结合拓扑优化设计,可使得应力分布更均匀,更好地服役于不同的加载环境;梯度点阵结构的压缩强度以及能量吸收是均匀点阵结构的两倍以上;通过热处理以及化学蚀刻可以降低点阵结构的残余应力和表面粗糙度,大幅提高其点阵结构的疲劳强度.通过控制单胞结构的分级孔隙度分布、合适的后处理,有望同时实现高孔隙率、高疲劳强度和高能量吸收.本文首先陈述了增材制造金属点阵多孔材料的优势和成形准则,随后介绍了单胞形状、单胞尺寸、支柱直径、体积孔隙率等因素对点阵结构尺寸精度和表面粗糙度的影响,并归纳了这些因素对点阵结构的屈服强度、能量吸收率和疲劳强度等性能的影响.此外,总结了点阵结构的拓扑优化和后处理对其性能的影响,最后介绍了增材制造金属点阵结构存在的掣肘,并展望了其未来的研究趋势.  相似文献   

6.
陶瓷材料具有优异的热学性能和力学性能,在众多领域显示出重要的应用前景。其固有的高强度、高硬度等性能却给陶瓷零件的成型带来了很多困难。将增材制造技术引入到陶瓷成型中将能有效克服上述困难,并为陶瓷材料复杂成型工艺提供了全新的可能性。本论文从陶瓷增材制造原料状态角度,综述了几种常见陶瓷增材制造技术的研究现状与进展,系统比较了各项技术在陶瓷领域应用的优缺点,并对今后陶瓷增材制造技术的发展进行了展望。  相似文献   

7.
陶瓷以其优异的热物理化学性能在航空航天、能源、环保以及生物医疗等领域具有极大的应用潜力。随着这些领域相关技术的快速发展, 其核心零件部件外形结构设计日益复杂、内部组织逐步走向定制化、梯度化。陶瓷具有硬度高、脆性大等特点, 较难通过传统的加工成形方法实现异形结构零件的制造, 最终限制了陶瓷材料的工程应用范围。激光增材制造技术作为一种快速发展的增材制造技术, 在复杂精密陶瓷零部件的制造中具有显著优势: 无模、精度高、响应快以及周期短, 同时能够实现陶瓷零件组织结构灵活调配, 有望解决上述异形结构陶瓷零件成形问题。本文综述了多种基于粉末成形的激光增材制造陶瓷技术: 基于粉末床熔融的激光选区烧结和激光选区熔化; 基于定向能量沉积的激光近净成形技术。主要讨论了各类激光增材陶瓷技术的成形原理与特点, 综述了激光选区烧结技术中陶瓷坯体后处理致密化工艺以及激光选区熔化和激光近净成形技术这两种技术中所打印陶瓷坯体基体裂纹开裂行为分析及其控制方法的研究进展, 对比分析了激光选区烧结、激光选区熔化以及激光近净成形技术在成形陶瓷零件的技术特征, 最后展望了激光增材制造陶瓷技术的未来发展趋势。  相似文献   

8.
目的 介绍了粘结剂喷射增材制造(BJAM)技术打印金属零件的发展历程、技术特点、打印材料和应用领域,重点分析了影响金属BJAM零件质量的主要因素,讨论了金属BJAM技术的研究重点.方法 归纳了金属BJAM技术的重要发展节点及现阶段技术的成熟度;总结了原材料、打印及烧结工艺参数对BJAM打印金属零件质量的影响规律;按材料种类讨论了BJAM打印金属零件的致密度、微观组织及力学性能.结论 通过分析金属BJAM技术可实现高效率、低成本制造金属零件,但仍存在烧结致密度低和收缩严重等问题,指出了改善铺粉质量、开发新型粘结剂和模拟预测烧结收缩等是金属BJAM技术未来发展的重点方向.  相似文献   

9.
增材制造技术的迅速发展,给铜合金制造技术提供了新的发展动力。主要综述了近年来国内外不同铜合金增材制造工艺的方法,分析了增材制造研究过程中遇到的增材制造试样晶粒易粗大、易形成裂纹及易引入杂质等问题,对比了不同增材制造工艺方法下,制备的铜合金试样的微观组织和力学性能。在此基础上,着重综述了铜合金增材制造技术研究在不同增材制造工艺方法方面的进展,并对增材制造试样与传统铸造试样的微观组织和力学性能进行对比。最后,对铜合金增材制造技术研究进展进行总结,并对其发展前景和发展方向进行展望。  相似文献   

10.
11.
栗卓新  祝静  李红 《材料导报》2021,35(11):11173-11178
为了满足不同工业领域的需求,目前已有多种利用材料沉积方法进行增材制造(AM)的技术.其中,电弧增材制造(Wire and arc additivemanufacturing,WAAM)是一种发展迅速的增材制造技术,具有低能耗、低碳和低成本的优势,适合大型复杂金属零部件成型.虽然增材制造技术在材料、工艺、机械装置和系统集成方面发展快速,但对环境的影响仍未引起重视.由于不同的制造工艺所需的材料和能源差异较大,一般来讲,增材制造技术相对于传统工艺的总体优势不明显.因此,除了对增材制造技术本身以及工艺性能等方面进行研究外,还需要分析不同工艺方法对环境的影响.生命周期评价(LCA)是一种对产品、工艺或活动从原材料获取到最终处理全过程的重要环境管理评价工具,被越来越多地运用到不同材料制造工艺的分析与研究中.但LCA在增材制造领域中的应用和研究还较少,目前研究主要集中在粉末增材制造工艺的能源消耗和成本方面,在能源对环境影响以及生命周期数据清单方面还很少,尚未见到对电弧增材制造技术的环境影响及评价的报道.因此,有必要对这一领域进行更深入的研究.本文介绍了生命周期评价的定义和技术框架,并基于生命周期评价方法,从确定目标和范围、清单分析、环境评价和结果解释四个方面,评述了电弧增材制造部件在整个生命周期中所有物质和能量对环境影响的研究现状.同时将增材制造技术与不同的工艺方法进行了对比,分析了不同增材制造技术对环境影响的特点和进展.  相似文献   

12.
铝合金增材制造技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
铝合金广泛的应用市场和增材制造快速成形的优势,使铝合金的增材制造技术成为研究的热点之一。从铝合金增材制造技术的角度出发,总结了国内外铝合金增材制造所使用的不同工艺方法,比较了各种方法的研究现状和最新成果,并且重点总结了铝合金增材制造的成形控制问题,对铝合金增材制造技术未来的研究热点和发展方向提出了预测。  相似文献   

13.
对于陶瓷立体光刻增材制造技术, 光敏树脂浆料的固含量发挥着重要的作用。本工作首先制备了不同固含量的Al2O3陶瓷浆料, 并采用立体光刻增材制造技术, 制备了Al2O3陶瓷, 并研究了Al2O3浆料的固含量与陶瓷性能的关联关系。其次, 探索了固含量对Al2O3浆料的流变行为、固化性能, 以及对Al2O3陶瓷的微观结构、力学性能的影响规律。结果表明, 随着固含量增加, 浆料的粘度和剪切应力均增大。在光固化增材制造过程中, 高固含量导致浆料的粘度高于其自流平的临界值, 且Al2O3浆料的固化性能与固含量高度相关。此外, 固含量明显影响光固化增材制造的Al2O3陶瓷的缺陷。这些制造缺陷对于Al2O3陶瓷的力学性能有重要影响。最后, 本工作总结了光敏Al2O3浆料的流变行为、固化性能与Al2O3陶瓷的微观结构和力学性能之间的关联关系。浆料的高粘度造成陶瓷的微观结构不均匀, 最终导致其力学强度较差。本研究结果可为陶瓷的光固化增材制造提供一定的参考。  相似文献   

14.
基于搅拌摩擦的固相增材制造是大型轻质合金构件成形制造的新技术,已成为国内外先进成形制造领域研究的热点之一。本文对目前国内外基于搅拌摩擦的金属固相增材制造技术及其相关工艺机理的研究现状进行了分析和总结。常见的基于搅拌摩擦的固相增材制造技术可分为三类:基于搅拌摩擦搭接焊原理,使板材逐层堆积,从而获得增材构件的搅拌摩擦增材制造(friction stir additive manufacturing,FSAM)技术;采用中空搅拌头,通过添加剂(粉末或丝材)进行固相搅拌摩擦沉积的增材制造(additive friction stir deposition,AFSD)技术;采用消耗型棒材,通过棒材的摩擦表面处理,形成增材层的摩擦表面沉积增材制造(friction surfacing deposition additive manufacturing,FSD-AM)技术。重点分析了金属材料基于搅拌摩擦的固相增材制造技术的国内外研究与应用现状,对比了三类基于搅拌摩擦的固相增材制造技术的特征及其工艺优缺点。最后指出增材工艺机理、形性协同控制、外场辅助工艺改型、新材料应用和人工智能优化是基于搅拌摩擦的固相增材制造技术未来研究的重点方向。  相似文献   

15.
电弧增材制造是近年来发展最为迅速的增材制造技术之一,其以电弧为热源,通过熔化金属丝材,在规划的路径上层层堆积成形三维实体金属构件,具有制造成本低、制造自由度与成形效率高等优点,尤其适用于大型尺寸及中低结构复杂度金属构件的形性一体化成形.近年来,电弧增材制造技术在国内外得到了广泛研究与长足发展,在电弧增材制造装备、过程控...  相似文献   

16.
超高温氧化物共晶陶瓷具有优异的高温强度、高温蠕变性能、高温结构稳定性以及良好的高温抗氧化和抗腐蚀性能, 成为1400 ℃以上高温氧化环境下长期服役的新型候选超高温结构材料之一, 在新一代航空航天高端装备热结构部件中具有重要的应用前景。基于熔体生长技术, 以选择性激光熔化和激光定性能量沉积为代表的激光增材制造技术具有一步快速近净成形大尺寸、复杂形状构件的独特优势, 近年来已发展成为制备高性能氧化物共晶陶瓷最具潜力的前沿技术。本文从工作原理、成形特点、技术分类等方面概述了基于熔体生长的两种典型激光增材制造技术, 综述了激光增材制造技术在超高温氧化物共晶陶瓷制备领域的研究现状和特点优势, 重点介绍了选择性激光熔化和激光定向能量沉积超高温氧化物共晶陶瓷在激光成形工艺、凝固缺陷控制、凝固组织演化、力学性能等方面的研究进展。最后, 指出了实现氧化物共晶陶瓷激光增材制造工程化应用亟需突破的关键瓶颈, 并对该领域未来的重点发展方向进行了展望。  相似文献   

17.
铝合金增材制造技术研究进展   总被引:1,自引:0,他引:1  
铝合金是实现结构轻量化的首选材料,在航空航天、交通运输、船舶舰艇等领域具有广阔的应用前景。铝合金增材制造技术在复杂三维精密结构件的制造方面具有突出的优势和潜力,而且具有高效快速、成形结构可控性高等优点。关于铝合金增材制造技术的迅速发展,本工作从组织与性能、成形精度和质量、成形缺陷控制和数值模拟4个方面,着重介绍了铝合金增材制造的研究现状和最新成果,总结了当前研究存在的不足。在此基础上,对铝合金增材制造技术未来应关注的研究方向给出建议,即实现增材件微观组织控制、阐明增材件应力形成机理、提高增材件的成形精度、研究成形过程中的温度场分布规律等。  相似文献   

18.
压电陶瓷作为一类重要的功能陶瓷材料, 具备高强度、高硬度、耐腐蚀等优点, 可实现机械能和电能间的相互转换, 常被用于制备传感器、驱动器、电容器等压电器件, 在海洋探测、生物医疗、电子通讯等高端装备中发挥着重要作用。针对高端技术领域对压电功能器件智能化、集成化、轻量化的发展需求, 压电陶瓷的外形和结构越来越复杂。注浆、注射、模压、切割等传统的压电陶瓷制造工艺, 大多需借助模具或刀具完成, 很难甚至无法制造具有中空、悬垂等复杂结构的压电陶瓷, 制约了压电功能器件的进一步发展。增材制造技术基于逐层累加原理可实现任意复杂结构快速定制, 具有成型效率高、无需模具等优点, 可满足个性化、整体化、复杂化制造需求, 近年来受到国内外压电陶瓷领域研究人员的广泛关注。本文从粉体、浆料、块材三种原材料形态角度, 综述了当前增材制造压电陶瓷的主要工艺种类及发展现状, 综合对比了各种工艺成型特点; 介绍了增材制造压电陶瓷在不同领域的应用进展; 最后, 总结和展望了增材制造压电陶瓷所面临的挑战和未来可能的发展趋势。  相似文献   

19.
增材制造的多孔金属生物材料广泛应用于植入物骨骼等生物医用工业领域,具有很大的发展潜力,目前,对多孔金属生物材料的研究主要聚焦在多孔生物材料的设计、制造与表面处理等方面.对比了不同增材制造技术的特点,并说明了粉床熔融技术最适合多孔金属生物材料的制造.同时,讨论了不同金属生物材料(生物惰性材料与降解材料)制造多孔生物材料的...  相似文献   

20.
铜/钢双金属材料具有力学强度高、物理化学性能优良等优势,在交通运输、电力能源和建筑工业等领域应用前景广阔。然而,传统熔铸工艺在制造铜/钢双金属材料时,容易在铜/钢界面处产生偏析现象,在一定程度上限制了铜/钢双金属材料的发展。与传统工艺相比,增材制造技术不仅能实现复杂加工零件的快速制造,而且在成形过程中较短的保温时间能缓和或消除异种金属材料界面产生的冶金缺陷,进而增强铜/钢双金属材料的力学性能。由于双金属材料是近年来的研究热点,有关增材制造铜/钢双金属材料的综述性文章较少,故综述了近年来激光、电子束及电弧增材制造技术制造铜/钢双金属材料的研究发展现状,分析了各技术的优缺点,并从制备方法、工艺参数及界面合金元素等角度,分析了影响材料界面组织性能变化的关键因素。发现在增材制造铜/钢双金属材料方面,目前激光增材制造技术主要应用于精度要求较高的小尺寸零部件,电子束增材制造技术适用于某些具有特殊性能的合金,如钛合金,而电弧增材制造技术适用于精度要求较低的大型复杂零部件。在铜/钢双金属材料增材制造过程中,界面处易形成显微组织分布不均匀、界面晶粒尺寸差异较大等现象,导致界面处产生应力集中,从而造成材料...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号