首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过正交试验研究了硫铝酸盐复合水泥中不同掺量的普通硅酸盐水泥、石膏、硅灰及粉煤灰对其强度、自收缩以及水化热的影响。结果表明:普通硅酸盐水泥及石膏的掺入显著改变了硫铝酸盐复合水泥水化进程,硅灰及粉煤灰是影响后期强度的主要因素;自收缩试验结果表明普通硅酸盐水泥和石膏是影响硫铝酸盐复合水泥水化早期自收缩的主要因素;水化热测试结果表明粉煤灰和普通硅酸盐水泥在水化前6 h起到显著作用,粉煤灰降低了水化放热,而普通硅酸盐水泥增加水化放热;硅灰及石膏对6~24 h水化放热影响显著。结合XRD及SEM测试结果,表明普通硅酸盐水泥和石膏的存在加速了硫铝酸盐复合水泥水化早期钙矾石生成,随着石膏浓度的下降,发生转晶(AFm),随着后期硫铝酸盐水泥中β-C2S的水化以及硅灰、粉煤灰的火山灰反应产生C-S-H凝胶,使得体系致密化。  相似文献   

2.
研究了偏高岭土对碱矿渣水泥强度的影响规律和不同养护条件下碱-矿渣-偏高岭土复合胶凝材料(M-AAS)的强度发展情况.结果表明:80%湿度和40℃温度下,掺入适量偏高岭土能提高碱矿渣水泥的强度性能,最佳掺量为20%左右;对于掺20%偏高岭土的碱-矿渣-偏高岭土复合胶凝材料,在80%湿度下,养护温度的提高有利于抗压强度的发挥,但对抗折强度的发挥不利;在80%湿度和20℃温度下,复合材料的抗折强度出现倒缩,对80%湿度养护和水中养护两种养护条件进行适当的组合,强度倒缩现象没有发生.  相似文献   

3.
掺矿渣石膏对油井水泥性能的改善   总被引:2,自引:0,他引:2  
系统研究了不同配比的矿渣石膏体系对改善G级油井水泥膨胀性能和力学性能的影响.通过汞压入法(method of mercury intrusion pore measurement,MIP)和扫描电镜(SEM)等现代测试方法对矿渣油井水泥的水化硬化特性和机理进行了研究.试验结果表明:掺加矿渣石膏后能显著改善油井水泥石的早期强度;并且该体系在50℃养护温度下,通过石膏的不同掺量,可以获得比较好的早期膨胀数据;通过微观结构的分析,验证了石膏对矿渣油井水泥体系的激发作用.  相似文献   

4.
本文研究了水灰比,掺和料及其复合(矿渣:粉煤灰=2:1复掺)、引气剂对硫铝酸盐水泥(SAC)混凝土各龄期抗压强度的影响,并与普通硅酸盐水泥混凝土(OC)进行了对比,结果表明:水灰比的增加.引气剂和掺和料的掺入都会使混凝土的早期,后期强度明显降低,但是,对于普通硅酸盐水泥混凝土,由于显著的二次水化作用,在一定的掺量范围内,掺和料的加入使混凝土的早期强度降低,但后期强度增长甚至超过未加掺和料的混凝土。  相似文献   

5.
马保国  朱艳超  胡迪  李海南 《功能材料》2013,44(12):1763-1767
利用维卡仪、水化放热速率、XRD、TG-DSC和SEM等测试手段,研究了甲酸钙(Ca(HCOO)2)对硫铝酸盐水泥凝结时间、水化历程和水化产物及微观形貌的影响。结果表明,Ca(HCOO)2可明显促进硫铝酸盐水泥的凝结,并缩短初凝和终凝时间间隔;显著缩短了硫铝酸盐水泥的水化诱导期,且使水化加速期提前,使第一水化热峰值提高32%,但对水化稳定期的水化放热速率无明显影响;Ca(HCOO)2可以提高硫铝酸盐水泥水化环境的碱度,在早期提高了水化产物钙矾石(AFt)的结晶度,水化早期生成的水化产物结构致密,但并不改变水化稳定期的水化产物和微观形貌。  相似文献   

6.
本文主要研究石膏、温度、水泥掺量对碱激发水泥-矿渣复合粉料强度的影响。通过变换石膏掺量、养护温湿度、水泥掺量来分析其强度变化规律。研究结果表明,掺人石膏对强度有利,当石膏掺量6%时强度最高。养护温度越高,试件的强度越高。在矿渣中加入少量的水泥,强度随水泥掺量的增多而降低。在水泥组分增加到20%时,强度有增高的趋势,并且矿渣的最大掺量应控制在80%以下。  相似文献   

7.
针对不同品种水泥基材料在高温下体积稳定性问题,采用差示热膨胀仪对普通硅酸盐水泥、高铝水泥和硫铝酸盐水泥分别制成的水泥石的热膨胀性能进行了测试,并用DTA/TG对影响水泥石高温热性能的原因和机制进行了分析。结果表明:3种水泥石的热膨胀率均随着温度的升高先增加后显著降低,到达一定温度后趋于稳定。分析热膨胀随温度变化的规律获知,3种水泥在高温状态下应用时,高铝水泥体积稳定性最佳、硫铝酸盐水泥次之、普通硅酸盐水泥石最差。水泥石的热膨胀均是由其固相组分的受热膨胀与主要水化产物的脱水收缩共同作用的结果,而水泥品种不同,其水化产物中主要脱水组分截然不同。  相似文献   

8.
研究了20℃和5℃时硫铝酸盐基高水填充材料的强度发展规律及微观结构,通过XRD、孔结构测试等方法研究了高水充填材料的微观结构与强度的关系,并重点研究了亚硝酸钠对高水充填材料水化产物微观结构及强度的影响.研究表明:高水充填材料的水化产物主要是以钙矾石为主的胶凝材料;亚硝酸钠具有促进硫铝酸盐水泥熟料水化和改善高水充填材料硬化体孔结构的双重作用,在5℃时这种作用更加明显.以硫铝酸盐基填充材料代替木材、钢材作为可泵性支护材料,具有凝结硬化速度快、施工方便、价廉等优点,但施工温度低于20℃时材料的性能研究报道甚少.  相似文献   

9.
研究了不同掺量纳米SiO_2对硫铝酸盐水泥抗压/抗折强度的影响,即掺入纳米SiO_2使水泥砂浆早期抗压/抗折强度显著提高,后期抗折强度未出现倒缩现象且具有较大的上升空间,掺3%纳米SiO_2水泥砂浆2,8h,1,3,28和56d抗折强度相比空白样分别提高了44.84%,41.80%,37.85%,37.78%,42.32%和65.03%。并通过XRD、SEM-EDS及水化热揭示了强度发展的影响机理。即水化早期的微集料填充作用、结晶成核作用使硬化浆体微观结构均匀密实,并促进了硫铝酸盐水泥8h前的水化;水化后期纳米SiO_2的火山灰效应进一步提高了水泥的水化程度。  相似文献   

10.
为了研究持续-5℃与20℃养护环境下,不同入模温度的水泥水化发展规律,开展了两种养护制度下,入模温度分别为5℃、10℃、15℃、20℃水泥净浆水化热试验,分析养护制度与入模温度对水泥净浆水化热作用机制,探究了负温下水泥内部自由水相变作用对其性能影响,建立了两种养护制度下考虑入模温度(5~20℃)的水化热预测模型。研究结果表明:养护制度一定时,随着龄期与入模温度增长,水泥净浆水化热与水化程度均逐渐增大;入模温度会使20℃养护与持续-5℃养护的水化热差值峰值与水化速率等值龄期发生提前;负温与低入模温度均会使水化进程出现龄期“滞后”现象,通过分析二者共同作用的水化热发展规律及其对水泥净浆微观作用机制,建议在负温环境下,可在合理范围内适当提高入模温度,以优化混凝土宏-微观性能。  相似文献   

11.
巴明芳  梁新奇  卢梦洁  柳俊哲 《材料导报》2015,29(10):133-136, 142
为了有效控制硫铝酸盐水泥(SAC)的凝结时间,研究了硼砂、葡萄糖酸钠、柠檬酸钠单掺和复掺对硫铝酸盐水泥凝结时间和流动性能的影响。结果表明:葡萄糖酸钠与柠檬酸钠以一定质量比复合后可以有效控制水泥浆体的凝结时间,并很好地改善其工作性能和早期强度,而且葡萄糖酸钠与柠檬酸钠复合质量比为5∶1时对硫铝酸盐水泥的缓凝效果最好。水化早期浆体的XRD和SEM分析结果表明,复合调凝组分的加入减缓了钙矾石的生成,并且使得水化产物中CSH凝结的生成数量增多,从而有效抑制了硫铝酸盐水泥的水化速度,并改善了其工作性能。  相似文献   

12.
高岩温隧道下矿物掺合料对混凝土力学性能的影响   总被引:1,自引:0,他引:1  
通过模拟高岩温隧道条件,研究了高岩温隧道条件下矿物掺合料对混凝土强度的影响。结果表明:高岩温条件下可以提高混凝土的早期强度,但后期强度却有较大幅度的下降,当温度低于50℃时,矿渣粉煤灰复合混凝土的强度更高;当温度超过60℃时,粉煤灰混凝土的强度更高。XRD及SEM分析表明:高岩温条件下胶凝材料水化速度加快,生成的水化产物来不及均匀扩散,相互搭接变差,当温度低于50℃时,水分蒸发较慢,水分充足,矿渣的活性容易被激发,水化产物结构致密;当温度超过60℃时,由于水分蒸发较快,矿渣的活性难以被激发,水化产物结构变疏松。  相似文献   

13.
以分析纯物料制备硫硅酸钙(C_5S_2$)矿物,通过XRD、f-CaO分析不同煅烧温度对C_5S_2$矿物合成的影响,Rietveld精修计算C_5S_2$矿物的合成率,SEM观测其形貌。将合成的C_5S_2$矿物按不同比例掺入硫铝酸盐水泥中,通过测定抗压强度及水化试样结合水含量来研究C_5S_2$矿物对硫铝酸盐水泥力学性能及水化速率的影响。研究表明:C_5S_2$矿物的最佳煅烧温度为1 150℃,合成率可达到94.9%,C_5S_2$晶体形貌为圆棒状。当C_5S_2$掺量在7.5%~10%时,水泥强度明显提高;当C_5S_2$掺量为10%时,水泥28 d强度可达到73.3 MPa。掺入适量C_5S_2$可以提高硫铝酸盐水泥的水化速率,当C_5S_2$掺量为10%时,水泥28 d结合水量达到27.48%,水化速率最高。  相似文献   

14.
《中国粉体技术》2016,(1):105-108
将硫铝酸盐水泥与硅酸盐水泥复合,并引入丁苯乳液作为聚合物改性剂制备高性能修补材料,研究硫铝酸盐水泥和丁苯乳液对修补材料的强度、凝结时间和黏度的影响和作用机制。结果表明:硫铝酸盐水泥明显提高复合水泥的早期强度,缩短初凝和终凝时间,增大黏度;适量丁苯乳液能在复合水泥浆体中形成网状结构,提高力学强度;丁苯乳液中的羧基能够减小熟料矿物铝酸钙、硅酸三钙和硅酸二钙的水化速率,复合水泥净浆的初凝和终凝时间均明显延长,黏度减小。  相似文献   

15.
研究了常温下硝酸铵钙对硫铝酸盐水泥浆体的流动度、凝结时间、抗压强度、电阻率及浆体内部温度、水化热、水化产物和孔结构的影响,对硝酸铵钙的早强作用机理进行了分析。结果表明,当硝酸铵钙的掺量从0增大到5%时,水泥浆体的初始流动度明显增大,凝结时间显著缩短,6 h,1,3,7和28 d抗压强度均显著提高,电阻率变化速率曲线峰值出现的时间逐渐提前,水泥浆体内部温度逐渐升高,温峰出现时间提前;其掺量在2%以内时,水泥水化放热速率明显加快,1 d累积放热量略有增大,钙矾石的生成速率及生成量均增大,硬化水泥浆体的平均孔径、总孔体积和孔隙率减小。由于硝酸铵钙能够明显加快硫铝酸盐水泥的水化进程,使其早期强度显著提高,因此可用作早强剂。  相似文献   

16.
超高性能混凝土(UHPC)是继高强度、高性能混凝土之后新近发展起来的一类新型混凝土材料。UHPC自身具备超高强度及高耐久性等优点,使其在高层、超高层建筑、大跨度空间结构与恶劣腐蚀环境下的重大土木工程中有广阔应用前景。本工作从材料制备角度,通过矿物掺合料改变UHPC基本配合比并且采用效率更高的微波养护方式对试件进行养护。通过一系列实验,观察矿渣的使用和微波养护对UHPC力学性能的影响,并通过微观表征分析研究其影响机理。制备了10%、25%、50%、70%和90%矿渣取代基本配合比中水泥部分用量试件,采用3 d延迟微波养护制度养护,测试3 d及28 d强度,随后选取性能典型试件进行29Si NMR、27Al NMR和XRD分析。实验发现标准养护下UHPC强度随着矿渣掺入而降低,但微波养护通过加速矿渣水化反应加强了混凝土力学强度发展进程。该加强效应对早期性能发展的影响更显著,且随着矿渣掺量增加而增强。微观表征分析首先确定了微波养护对试样水化的加速作用,并促进了晶体产物和短链C-S-H的形成,达到进一步克服矿渣对UHPC强度发展的延迟作用。  相似文献   

17.
0~20℃硅酸盐水泥的水化性能   总被引:1,自引:0,他引:1  
采用X射线衍射仪(XRD)及环境扫描电子显微镜(ESEM)研究0℃、5℃、10℃及20℃时硅酸盐水泥的水化过程,并进行凝结时间及力学强度测试。结果表明,温度越低,硅酸盐水泥的初凝和终凝时间越长,水泥早期的水化程度和力学强度也越低;但水化后期,水泥水化产物C-S-H凝胶明显细长,水化产物间距较小,大孔减少且孔隙分布更均匀,水化程度和后期强度较高。  相似文献   

18.
通过维卡仪、等温量热仪、X射线衍射仪、扫描电子显微镜等测试手段,研究了纳米TiO_2对硫铝酸盐水泥凝结时间、早期水化过程和水化产物的影响。结果表明,加入纳米TiO_2可以显著改善硫铝酸盐水泥早期凝结硬化过程,缩短水化诱导期,提前进入加速期和减速期,但是对稳定期的水化速率无明显影响。加入纳米TiO_2影响了晶体的形成速率和结晶度,但是不改变水化过程的类型,加入纳米TiO_2使水化产物结构密实,并导致其含量和微观结构发生一定程度的变化。  相似文献   

19.
为研究纳米二氧化硅-矿渣-水泥复合胶凝材料的抗硫酸盐侵蚀性能,将砂浆试件浸泡在不同温度下的3%硫酸钠溶液中进行侵蚀试验,以抗折强度和抗蚀系数作为指标对其抗蚀性进行评价,并与普通硅酸盐水泥和抗硫酸盐水泥试件进行对比。采用微观分析方法对腐蚀产物的成分进行分析。研究结果表明:纳米二氧化硅-矿渣-水泥复合胶凝材料在不同温度下均具有优异的抗硫酸盐侵蚀能力,随着纳米二氧化硅掺量的增加,抗蚀性能增强;随着温度的降低,试件的侵蚀速率加快,270d的抗蚀系数及抗折强度逐渐降低。养护温度的改变导致腐蚀产物的成分发生变化,5℃养护条件下腐蚀产物中钙矾石及碳硫硅钙石均存在,但以后者为主。  相似文献   

20.
本实验通过在实验室制备稻壳灰并测试其相关性能,然后将稻壳灰按照实验设定的方案加入水泥中,待其水化硬化再从宏观和微观两个方面进行分析,以此来评价稻壳灰对固井水泥石的影响因素。结果表明:稻壳灰含有孔状结构,是一种多孔材料,同时它易磨,易制备,经过研磨后的稻壳灰比表面积较大,微集料填充效应良好。另外本实验探究得出稻壳灰掺量为12%时,养护得到的水泥石试样早期强度同比净浆一天增长15%~20%,两天增长25%~30%,因此可得出稻壳灰能改善固井水泥石的早期强度,最佳掺量为12%。利用XRD、SEM、EDS和TG等实验设备分析稻壳灰提高固井水泥石早期强度的原理为稻壳灰可以使水泥石中不同粒度的原料呈最密堆积,提高水泥石的致密度;稻壳灰中的高活性Si O2会与水泥的水化产物Ca(OH)2发生火山灰反应促进水泥的二次水化,生成了大量胶凝相即水化硅酸钙,提高水泥石的力学性能和改善水泥石微观结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号