首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴国玉  郑晔  王明涌  邢志军 《材料导报》2021,35(z2):306-310
质子交换膜燃料电池阴极需要使用高活性的电催化剂来加速氧还原反应(ORR)速率,而提高活性成分贵金属铂(Pt)的功能反应利用率可解决其关键问题.本工作利用过渡金属钴Co(Ⅱ)?有机框架(Co?MOF)为前驱体合成ORR催化剂载体Co/C,并采取浸渍?液相还原法负载Pt纳米粒子制备了合金Pt?Co/C催化剂.通过对样品的孔隙结构、物相结构、微观形貌等表征,证实了载体Co/C具有较大的比表面积和相互连通的分级介孔结构,其独特的形貌、丰富的孔隙结构使负载的Pt纳米颗粒均匀分布、粒径范围窄,平均粒径约为6.8 nm.进一步对催化剂进行电化学性能评价,其电化学活性表面积(ECSA)接近于商用Pt/C催化剂的值,结果表明合金催化剂中活性成分Pt具有较高的利用率,同时还表现出载体独特的孔隙结构优势.  相似文献   

2.
金属-空气电池是一类以金属燃料作为负极活性物质,空气中的氧气作为正极活性物质,正负极活性物质反应产生的化学能通过电化学反应而非燃烧反应转化成电能的环境友好型燃料电池。金属-空气电池的成功运行往往依赖于高效的空气电极,氧还原过程作为空气电极的主反应,还原过程中产生的高过电位严重制约着金属-空气电池的大规模应用。目前金属-空气电池阴极普遍使用昂贵的Pt/C氧还原催化剂材料来降低氧还原过程的高过电位,最大程度地减少电池电压以及输出功率的损失。氧还原催化剂材料的研究重点是寻找更高效、廉价的催化剂。目前常见的氧还原催化剂主要包含铂类贵金属、过渡金属氧化物和硫化物以及碳基非金属复合材料,其中铂类贵金属型氧还原催化剂凭借其优异的氧还原催化性能得到广泛关注。随着化学合成手段的不断发展,越来越多的异质结构铂类贵金属型氧还原催化剂被合成,基于各组分之间独特的协同作用,其往往表现出优于单一组分的催化性能,近几年对铂类贵金属型氧还原催化剂的研究主要集中在以下两个方面:(1)探究铂类贵金属催化剂表面元素组成及原子排布与其催化活性之间的关系,例如,研究纯铂纳米晶的晶面指数与其氧还原催化性能之间的关系;(2)设计特殊结构的铂类催化剂来达到优化氧还原催化剂催化活性和降低材料生产成本的目的,例如,在廉价核材料上通过异质外延生长的方式沉积铂壳层,可大大提升铂原子的催化效率。本文归纳了形貌可控的铂类贵金属氧还原催化剂的研究进展,分别对规则多面体型纯铂及铂类合金纳米晶,特殊结构铂类合金纳米晶氧还原催化剂进行了详细介绍。此外,为了更好地理解氧还原的催化机制,本文就氧还原过程的动力学与热力学原理进行了简单总结。由于铂类贵金属氧还原催化剂的形貌对其氧还原活性影响很大,为了更好地说明催化剂形貌的设计与合成原理,本文还补充说明了纳米晶体的生长机制。最后,简要总结了铂类贵金属型氧还原催化剂未来的研究重点。  相似文献   

3.
燃料电池阴极发生氧还原反应(ORR)的动力学过程缓慢,通常需要Pt/C作为催化剂降低反应过电位。然而Pt作为一种贵金属,其使用将极大增加燃料电池的生产成本,因此开发非贵金属催化剂来替代Pt/C催化剂具有重要意义。金属有机框架材料(MOFs)因其具有高比表面积、有序多孔结构、拓扑结构可调等特点作为前驱体被广泛应用于M-N/C类催化剂的合成。M-N/C类催化剂继承了MOFs的结构特征,且具有丰富的活性位点,提高催化活性和分级结构以促进传质过程,因此表现出良好的ORR催化性能。从单金属/氮/碳和多金属/氮/碳组成角度出发,对近几年来关于M-N/C类催化剂的结构设计思路和合成策略进行了总结,阐述了其在ORR中的催化性能,展望了其未来发展前景。  相似文献   

4.
金属-空气电池氧还原反应催化剂研究进展   总被引:5,自引:0,他引:5  
氧还原电极催化剂是金属空气电池的关键电极材料,综述了金属-空气电池氧还原电极催化剂的研究进展,包括贵金属及其合金、过渡金属氧化物以及过渡金属有机大环化合物等催化剂.过渡金属氧化物因价格低廉、性能优良而具有广阔的应用前景.通过对各种氧还原反应催化剂性能进行比较,认为未来金属-空气电池发展的关键在于寻求更高性价比的氧还原反应催化剂.  相似文献   

5.
修饰和改良载体是改善质子交换膜燃料电池阴极铂基催化剂性能的主要途径。以铁氮(FeN)掺杂活性炭(Black Pearl 2000,BP)为载体,获得负载型铂基催化剂。使用电化学方法对催化剂的氧还原反应活性以及稳定性进行测试,采用X射线衍射仪、比表面积和孔径分布测试、透射电子显微镜、X射线光电子能谱等分析手段对载体及催化剂结构进行表征。结果表明:Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位均为0.94 V,具有相当的氧还原反应初始活性;老化测试后,Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位损失分别约为10,30 mV,半波电位损失分别约为5,60 mV,Pt/FeN-BP催化剂的稳定性明显优于商业Pt/C催化剂。这是因为,铁氮掺杂碳载体具有适中的比表面积和孔径大小,Pt颗粒在载体上以小粒径的状态存在且老化测试后Pt颗粒无团聚现象,以及载体与Pt颗粒之间可能存在一定的相互作用。  相似文献   

6.
宋大凤  雷宗坤  曾小华 《材料导报》2018,32(23):4061-4066
为提高燃料电池阴极催化剂(Pt-Fe)/Pt合金的氧还原催化活性和稳定性,在Pt-Fe合金体系中引入元素Al,熔炼得到中间合金(Pt-Fe)Al,再经过NaOH溶液定向腐蚀得到(Pt1-xFex)3Al/Pt合金,用其作为燃料电池氧还原反应的催化剂,并对其结构、催化活性和稳定性进行了研究。结果表明,所制备的催化剂材料(Pt1-xFex)3Al/Pt合金具有由几个原子层厚的纯Pt外壳和成分为(Pt1-xFex)3Al的内核构成的双模孔隙且内部互通的包覆式结构。相比于传统燃料电池的氧还原反应催化剂Pt/C材料以及由Pt-Fe体系制备的Pt46Fe54/Pt合金,(Pt1-xFex)3Al/Pt合金的比活性分别是Pt46Fe54/Pt合金、Pt/C比活性的 1.21倍和2.69倍,其质量活性分别是Pt46Fe54/Pt和Pt/C的1.17倍和5.3倍。在催化稳定性方面,(Pt1-xFex)3Al/Pt的电化学活性面积在10 000圈伏安循环后衰减到89%,然后趋于稳定,且循环40 000圈后其仍保留80%的电化学活性面积。由此可见,所制备的催化剂材料(Pt1-xFex)3Al/Pt合金具有较高的催化活性及催化稳定性。  相似文献   

7.
张焰峰  李忠  杨书廷  曹朝霞  孙公权 《功能材料》2004,35(Z1):2102-2105
为了研究稀土掺杂对PEMFC用Pt/C电催化剂的影响,本文使用浸渍法合成了La、Nd稀土掺杂MPt/C催化剂材料,并采用XRD分析了其晶相结构变化规律.用循环伏安和电性能实验测试了样品的催化活性,探讨了其微观结构与催化性能之间的关系.结果表明稀土掺杂使其氧还原反应的活性晶面得到提高,使Pt粒径减小,从而提高其电化学比表面积和催化活性,显著改善了PEMFC的电池性能.  相似文献   

8.
Fe-N/C催化剂在氧还原反应中的作用机理对于开发高效、可持续使用的非贵金属催化剂在聚合物电解质膜燃料电池中的应用至关重要,但目前仍存在很多的难以攻克的问题。为了揭示纳米结构与电化学活性的关系,本研究开发了一种具有高电化学活性的Fe-N/C氧还原催化剂,该催化剂含有Fe-N_x位点和被氮掺杂的碳纳米管包裹的Fe/Fe_3C纳米晶体两种具有氧还原反应电化学活性的纳米结构。尽管不含贵金属铂,本研究合成的Fe-N/C催化剂在碱性条件下仍显示出较高的ORR活性,半波电势为0.86 V(vs RHE),质量活性为18.84 A/g(0.77 V(vs RHE),极限电流密度为–4.3 mA·cm~(–2)。同时,电子转移数为3.7(0.2 V(vs RHE),说明Fe-N/C催化剂中4电子ORR反应的比例较高。石墨烯包覆的金属Fe/Fe_3C纳米晶生长N-CNTs后,材料的导电性有所提高,并且Fe-N_x活性位点在Fe/Fe_3C纳米颗粒表面分布均匀,改善了材料的电化学活性。本研究为非贵金属氧还原电催化剂的继续深入研究以及广泛应用于商业化生产提供了一定的借鉴和依据。  相似文献   

9.
采用便捷的一步热解途径合成了氮掺杂石墨烯载钴纳米粒子(Co/NG),并表征了其结构、形貌和表面性质,进一步评价了Co/NG作为阴极催化剂对氧还原反应的电催化性能。透射电镜(TEM)和X射线粉末衍射(XRD)谱分析显示平均粒径21.4nm的Co纳米粒子较均匀地分散在三维多孔状石墨烯上。X射线光电子能谱(XPS)结果表明,Co/NG存在两类含氮组分,即吡啶氮和吡咯氮。电化学测试结果显示,Co/NG催化剂在碱性介质中对氧还原反应的起始还原电位约-0.049V,极限电流密度为5.9mA/cm~2。其电催化活性与商业化Pt/C相当。  相似文献   

10.
采用微波-乙二醇方法还原氧化石墨烯和Pt(v)、Co(Ⅱ)粒子混合物,再经300℃H2还原,制备了石墨烯负载Pt-Co合金催化剂(Pt-Co/G).利用透射电镜、X-射线能谱、X-射线衍射和光电子能谱对所制催化剂进行表征.Pt-Co合金的粒径为3nm~8 nm,均匀地分散在石墨烯片上.与单金属的Pt/G和商品化的Pt/C催化剂相比,所制合金化的Pt-Co/G催化剂对氧还原反应展现出高的催化活性和可比拟的稳定性,显示了其在燃料电池中的应用潜力.  相似文献   

11.
王振尧  陈戈  夏定国 《功能材料》2004,35(Z1):2032-2034
用氢气在高温下还原吸附到碳载体上的钼酸铵和氟铂酸,制备出Pt/MoOx/C金属-氧化物复合型催化剂.考察了Pt/MoOx/C催化剂的电化学性能,经旋转圆盘电极测试表明在低电位区Pt/MoOx/C对含甲醇溶液中的氧还原的催化活性高于Pt/C.  相似文献   

12.
Fe-N/C催化剂在氧还原反应中的作用机理对于开发高效、可持续使用的非贵金属催化剂在聚合物电解质膜燃料电池中的应用至关重要, 但目前仍存在很多的难以攻克的问题。为了揭示纳米结构与电化学活性的关系, 本研究开发了一种具有高电化学活性的Fe-N/C氧还原催化剂, 该催化剂含有Fe-Nx位点和被氮掺杂的碳纳米管包裹的Fe/Fe3C纳米晶体两种具有氧还原反应电化学活性的纳米结构。尽管不含贵金属铂, 本研究合成的Fe-N/C催化剂在碱性条件下仍显示出较高的ORR活性, 半波电势为0.86 V(vs RHE), 质量活性为18.84 A/g(0.77 V(vs RHE), 极限电流密度为-4.3 mA·cm -2。同时, 电子转移数为3.7(0.2 V(vs RHE), 说明Fe-N/C催化剂中4电子ORR反应的比例较高。石墨烯包覆的金属Fe/Fe3C纳米晶生长N-CNTs后, 材料的导电性有所提高, 并且Fe-Nx活性位点在Fe/Fe3C纳米颗粒表面分布均匀, 改善了材料的电化学活性。本研究为非贵金属氧还原电催化剂的继续深入研究以及广泛应用于商业化生产提供了一定的借鉴和依据。  相似文献   

13.
目前,贵金属铂被认为是性能最优异的氧还原催化剂,但是其昂贵的价格、有限的储量制约了其大规模应用,因此制备具有高催化活性和稳定性的过渡金属基催化剂迫在眉睫.在本工作中,我们构筑了一种CoFe合金纳米颗粒嵌入到N-掺杂石墨化碳纳米结构中的复合材料(CoFe/NC)作为氧还原催化剂.我们首先制备了ZIF-67纳米立方体,再利用离子交换法在其骨架中引入Fe2+形成CoFe-ZIF前驱体.通过在惰性气氛下煅烧得到CoFe/NC催化剂.由于钴、铁及氮掺杂的协同作用,CoFe/NC-0.2-900催化剂(在900°C下煅烧掺杂0.2 mmol硫酸亚铁的CoFe/NC)表现出优异的氧还原性能,尤其是极限电流密度(6.4 mA cm^-2)远高于Pt/C(5.1 mA cm^-2).采用CoFe/NC-0.2-900和NiFeP/NF(负载在泡沫镍上的NiFeP)分别作为放电和充电反应催化剂组装的可充电锌空气电池,与传统的Pt/C+RuO2/C催化剂组装的电池相比,具有较低的充放电电压差、较大的功率密度和更优异的循环稳定性.  相似文献   

14.
铁系元素掺杂的Pt基疏水催化剂的制备及活性研究   总被引:2,自引:0,他引:2  
以炭黑为载体、乙二醇为溶剂, 利用高压微波加热法分别制备了铁系元素(即Fe、Co、Ni三种元素)掺杂的Pt基二元催化剂. 采用TEM、XRD、EDX、XPS等手段分析了催化剂的微观结构. 活性金属粒子在炭黑载体表面分布均匀; Fe、Co、Ni掺杂后, 催化剂中活性金属粒子的粒径分布变窄, 平均粒径明显减小(由4.57nm分别降低至2.17、2.41、2.55nm); 催化剂中Pt存在Pt(0)、Pt(II)、Pt(IV)三种价态. 将催化剂分散于聚四氟乙烯乳液中, 采用自然浸渍法负载于泡沫镍, 制得Pt基疏水催化剂, 考查了其对氢-水液相交换反应的催化活性. 与单一Pt基疏水催化剂相比, 过渡金属掺杂后的二元疏水催化剂对氢-水液相交换反应的催化活性明显提高. 其催化活性由高到低依次为: PtFe/C/FN>PtCo/C/FN>PtNi/C/FN>Pt/C/FN. 催化活性的提高可能主要来源于催化剂活性金属粒径的减小. 此外, H2O分子在Fe系元素表面的解离行为也有一定的贡献.  相似文献   

15.
合理设计铂纳米颗粒尺寸是制备高效氧还原电催化剂的关键.本工作中,我们借助静电纺丝和ZIF-8的双重限域作用合成了超细铂纳米颗粒锚定在多孔碳纳米纤维上的催化材料.低Pt负载(4.2 wt%)的Pt@PCNFs在碱性和酸性电解质中均表现出优异的氧还原反应活性,其质量活性分别为41和51 A gPt-1,分别是商业Pt/C催化剂相应值的8倍和10倍.在不同温度的碱性和酸性环境的计时安培试验和加速稳定性实验中, Pt@PCNFs的稳定性均优于Pt/C基准.该催化剂的优异性能可归因于小尺寸的Pt纳米颗粒、丰富多孔的纤维结构、Pt纳米颗粒与N掺杂碳纳米纤维之间的强金属载体相互作用以及碳壳层的保护作用.  相似文献   

16.
金属-空气电池是一种高效、安全的能量转化装置,在便携式电子设备、通信基站等领域有着良好的应用前景。氧还原反应(ORR)是金属-空气电池的关键电化学过程,然而该过程的反应动力学缓慢,限制了金属-空气电池的能量转换效率。开发高活性氧还原反应催化剂一直是金属-空气电池的研究热点。尽管Pt基催化材料是氧还原反应的有效催化剂,但其高成本和稀缺性等限制了金属/空气电池的大规模应用。本文综述了成本低、活性较高的不同种类ORR催化材料,系统总结了这些材料的制备方法和性能水平。  相似文献   

17.
蔡超  陈亚男  傅凯林  潘牧 《材料导报》2017,31(17):20-26
成本和耐久性依然是制约质子交换膜燃料电池商业化发展的两大瓶颈。首先综述了质子交换膜燃料电池阴极Pt/C催化剂在实际工作条件下的降解情况,并给出了可能的降解机制。结果表明,Pt/C催化剂在实际工作条件下,尤其是在汽车应用中是不稳定的,通常无法用作燃料电池阴极催化剂。而Pt合金催化剂因具有优异的氧还原催化性能和相对较好的耐久性,被认为有望解决成本和耐久性这两大难题,因此在质子交换膜燃料电池中日益得到重视和应用。但如何改善合金催化剂的耐久性依然是一个棘手的问题,文章最后详细综述了PtxCoy合金催化剂可能的衰退机理,以及可在一定程度上提高Pt合金催化剂耐久性的Pt单层结构和Pt核壳结构,这对催化剂的合成和设计具有一定的指导意义。  相似文献   

18.
传统的Pt/C催化剂,由于仅仅是处于纳米粒子表层的Pt原子参与电催化反应,而大多数位于粒子内层的Pt却未能得到有效利用,由此造成燃料电池成本高昂,阻碍了它的大规模商业化进程。核壳结构催化剂是近年来出现的一类极其重要的低Pt催化剂,这类催化剂是使用廉价贵金属、过渡金属、合金及导电化合物的纳米粒子作为核,在其表面覆盖一个原子层厚度或者几个原子层厚度的Pt为壳层而制得的新型高性能催化剂。核壳结构低Pt催化剂可大幅度降低燃料电池的贵金属Pt的使用量,进而降低燃料电池的成本,是实现质子交换膜燃料电池大规模商业化的希望所在。有关核壳结构低Pt催化剂的研究已成为燃料电池领域最热门的研究课题之一。综述了近年来低Pt核壳结构催化剂的研究进展,包括低Pt核壳结构催化剂制备技术的研究进展,以廉价贵金属、合金及导电化合物纳米粒子作为核的低Pt核壳结构催化剂的设计、制备及其相关研究情况。介绍了不同类型的核与Pt壳层之间的相互作用,讨论和总结了影响低Pt核壳结构催化剂电催化活性的相关因素,并对低Pt核壳结构催化剂的研究及其应用进行了展望。  相似文献   

19.
开发高效、稳定的非贵金属氧还原(ORR)催化剂是促进燃料电池商业化进程的关键。通过树脂衍生N、S共掺杂碳材料负载原位生成的Co@Co9S8核壳结构纳米颗粒,制备出一种具有良好活性和稳定的非贵金属催化剂Co@Co9S8/NSC。电化学测试结果表明:Co@Co9S8/NSC催化剂的半波电位(E1/2)和极限电流密度可与商业Pt/C催化剂相媲美。同时相较商业Pt/C催化剂,其还具有极好的抗甲醇活性。此外,计时电流测试表明:持续老化10000s后,Co@Co9S8/NSC的电流密度保持了初始值的97.5%,远低于商业Pt/C催化剂的23.3%。为构建高活性高稳定性核壳结构ORR催化剂提供了新的思路,同时其思路也可以应用于其他新能源电极材料如Li-空气电池、Li-S电池及超级电容器等。  相似文献   

20.
氧电极催化剂是制约质子交换膜燃料电池(PEMFCs)发展和应用的一个重要因素, 开发低价高效的非贵金属催化剂对PEMFCs来说已成为当务之急。本研究选择氮掺杂的碳载过渡金属(M-N/C)类催化剂为研究对象, 以铁盐作为金属前驱体, BP2000为碳源, 聚吡咯(PPy)为氮源, 对甲基苯磺酸(TsOH)为掺杂剂, 合成了非贵金属催化剂Fe-PPy-TsOH/C, 探究了不同的热处理温度及钴原子的掺杂对其氧还原催化性能的影响。研究结果表明: 800℃制备的Fe-PPy-TsOH/C催化剂因结晶度高、颗粒大小适中且分布均匀而具有最佳的氧还原催化性能; 一定量的钴原子取代可以改善Fe-PPy-TsOH/C的氧还原催化性能, 当钴的掺杂量为33.33%时(铁钴原子比为2︰1), 催化剂的性能达到最优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号