首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
为满足大口径离轴三反空间望远镜在轨成像质量需求,设计了一种基于6-PSS并联机构的次镜调整机构,并针对其精度进行了分析与实测。首先,分析了次镜调整机构的组成和光学系统对它的精度需求。随后,以逆运动学分析为基础建立了次镜调整机构的误差模型,并对结构参数、动平台位置、动平台姿态对整机精度的影响进行了理论分析,根据分析结果结合实际空间包络及重量等约束确定结构参数,并采用Monte Carlo模型分析了该结构参数下的次镜调整机构的随机误差和系统误差。最后,搭建了精度测试系统,对次镜六维调整机构的主要技术指标进行了实测。测试结果显示,次镜六维调整机构的位移分辨率优于0.1μm,角度分辨率优于0.5″,双向重复定位精度达到亚微米/亚角秒量级(±0.4μm/±0.3″),其绝对定位精度可以达到微米/角秒量级,满足大型空间望远镜在轨成像要求。  相似文献   

2.
设计了一种由压电陶瓷驱动的整体式平面3-PRR柔顺并联定位平台,平台每条支链采用半圆型柔性转动铰链和直角型柔性直线铰链代替传统的转动副和移动副,消除了传统机构的铰链配合间隙和摩擦,通过Ansys软件对两种铰链进行了刚度分析,并在支链的输入端设计了柔性杠杆位移放大机构以提高平台的工作空间。基于“伪刚体模型法”建立了柔顺定位平台的运动学模型,采用Ansys软件对柔顺并联平台进行有限元分析,得到其静力学特性,最后搭建了平台测试实验系统进行了验证实验。通过运动学模型解析结果和有限元仿真结果与实验结果对比,得到在x方向、y方向和转动角φp的最大误差分别为10.81%,9.66%和9.79%,验证了运动学理论模型建模方法的可行性。  相似文献   

3.
基于交叉簧片柔性铰链(简称‘交叉铰链’)设计了一种用于光束跟踪、精密指向和瞄准的同轴八铰微位移放大机构。该机构使用菱形构型,用交叉铰链作集中柔性元件,节点处交叉铰链两两同轴配合使用,以便保证运动的平稳输出。研究了机构的运动学以及力学性能,计算了微位移机构的行程放大比和灵敏度;根据交叉铰链的刚度模型,推导出微位移机构的理论刚度;最后,应用有限元软件对机构进行建模并对运动学、静力学以及动力学性能进行仿真。完成了样机的加工和测试,测试结果显示,机构放大比为1.905,理论与测试误差低于2.2%,结构刚度为18.21N/mm,误差低于0.32%,一阶频率为8.8Hz,误差低于5%。分析结果验证了本设计的可行性和有效性。该机构适用于空间高精度微位移领域。  相似文献   

4.
3-PPSR并联微动机器人静刚度分析   总被引:5,自引:1,他引:5  
为简化6支链并联微动机器人的复杂结构,减小装配误差,提出压电陶瓷驱动的3-PPSR构型6自由度并联微动机器人结构.采用整体式下平台和三条两端带有柔性球铰链和直圆柔性铰链的支杆,使结构紧凑并有利于提高精度.为分析对并联微动机器人精度具有重要影响的静刚度指标,首先求出此类机器人的逆解矩阵及支杆柔性铰链处微小角位移和末端位姿的关系.在此基础上,考虑支杆两端柔性铰链和弹性平板的弹性变形,运用虚功原理推导并联微动机器人静刚度矩阵.进而仿真分析机构各几何参数对静刚度的影响,获得支杆两端铰接点半径及直角弹性平板和支杆两端柔性铰链尺寸对刚度的影响规律,为此类并联微动机器人刚度配置和机构优化设计提供理论依据.  相似文献   

5.
基于大行程柔性铰链的并联机器人刚度分析   总被引:3,自引:1,他引:2  
基于大行程柔性铰链的并联机器人系统可以在立方厘米级的工作空间内提供亚微米级的运动精度。所采用的大行程柔性铰链的几何参数及其在空间内的布置,将会直接决定并联机器人的系统刚度,从而间接的影响整体系统的工作空间、承载能力和驱动负荷等一系列系统性能。提出了大行程柔性铰链基于刚度方程的弹性模型,采用刚度组集的方法并通过建立协调方程,构建得到整体系统的刚度模型。进而进行了系统刚度性能分析,得到系统刚度影响图谱,为这类新型的柔性并联机器人的设计与开发提供了有力依据。  相似文献   

6.
针对全柔性并联机构的柔性铰链存在蠕变、回程反力和应力松弛的缺陷,基于空间三自由度并联机构的设计原型,设计了两种不同结构形式的全柔性并联机构。首先,基于"铰链替换法"设计出了一种全柔性并联机构;然后,基于"型综合法"和拓扑优化理论设计了一种集成式全柔性并联机构;最后,建立机构的静刚度分析和频域分析模型,分别对机构进行仿真分析和实验研究。结果表明,相对于第一种方案的全柔性并联机构,集成式全柔性并联机构具有更高的运动精度、更优的刚度特性和更佳的抗振性,验证了集成式全柔性并联机构拓扑优化设计方法的有效性。  相似文献   

7.
以柔性体理论为基础,使用多体动力学仿真软件A D A M S和有限元分析软件A N SY S建立了3-PU S并联机构的刚柔耦合模型,对3-PU S并联机构的刚柔耦合模型和多刚体模型进行了仿真和分析。结果表明,在仿真运动开始的瞬间,刚柔耦合模型中动平台的速度、位移和铰接处的应力均有一定频率的波动现象,反映了该并联机构实际的动态特性,为并联机构的进一步的设计、优化和校核提供了依据。  相似文献   

8.
针对4-URU型柔性并联机构,提出了一种对支链刚度的新型求解方法,应用软件仿真结果验证该方法的有效性.首先,利用螺旋理论对4-URU刚性并联机构进行自由度分析,采用柔性铰链替换法设计相应的柔性并联机构.基于柔性铰链刚度矩阵,利用转换矩阵法求得支链的铰链刚度矩阵,利用有限元理论分别求得支链各柔性杆刚度,通过线性叠加求得支...  相似文献   

9.
为了提高3-RRRU空间刚柔耦合并联机构的轨迹跟踪精度,提出了一种基于瞬态刚体校正法的逆动力学模型求解方法来构建该机构的非线性控制策略。首先,利用自然坐标法和绝对节点坐标法建立该机构的非线性逆动力学模型,它考虑了各支链柔性空间梁单元的剪切效应,并能描述柔性梁的大范围非线性弹性变形。然后,通过分析刚柔耦合动力学模型在求解过程中出现的相容性问题,结合自然坐标法与理想运动学模型,提出了瞬态刚体校正法并求出逆动力学模型的稳定数值因果解。最后,基于该数值解构建并联机构的非线性控制策略,通过仿真与实验验证了该方法的可行性与有效性。仿真与实验结果表明:逆动力学方程组的求解精度为10-6,约束方程的相容误差为10-8;与刚性并联机构的控制方法相比,该方法在圆形轨迹下的最大跟踪误差降低了0.465mm,圆度误差降低了0.416mm。结果表明:该求解方法解决了闭链机构多体动力学方程的违约问题,有效地改善了系统的综合收敛性能,所构建的控制策略提高了并联机构的轨迹跟踪精度。  相似文献   

10.
《机械传动》2017,(10):70-74
精密平台是一种能够提供微位移的高精度工作平台,柔性铰链作为传动机构,在精密平台设计中广泛应用。柔性铰链是决定平台性能的关键,柔性铰链的结构形式和尺寸参数影响着定位精度的高低。设计了一种叠加支链形式的柔性铰链结构,推导了基于该柔性铰链的二维精密平台的工作刚度、耦合刚度、耦合系数、铰链应力等性能指标的解析公式,并采用了有限元软件对性能指标进行了验证。仿真表明,两者具有良好的一致性,为应用于精密平台的柔性铰链设计提供参考。  相似文献   

11.
Y型柔性铰链的设计与实验   总被引:1,自引:0,他引:1  
为设计一种高精度、结构简单的大变形柔性铰链,提高并联平台的运动精度和零件使用寿命,本文提出了一种Y型柔性铰链。首先,借助ANSYS和ADAMS进行柔性铰链的回转中心、安装方式和行程要求的分析研究。接着,利用数控机床进行柔性铰链的加工制作。然后,利用光学坐标测量仪OPTOTRAK进行柔性铰链的轴漂测量实验。最后,进行了转动副并联平台、单片簧柔性铰链并联平台和Y型柔性铰链并联平台的圆轨迹实验。实验结果表明:Y型柔性铰链回转误差最大值为0.5962mm,Y型柔性铰链并联平台圆轨迹的误差最大值比转动副并联平台减小了42.7%。Y型柔性铰链可以很好地替换并联平台中的转动副,提高并联平台运动精度。  相似文献   

12.
柔性铰链是一种行程小,定位精度高的传动机构,对加工精度有较高的要求。针对柔性铰链关键尺寸3种不同的加工误差,通过建模和受力分析,推导了直圆柔性铰链存在加工误差时的转动刚度计算公式,以数值积分方法计算刚度误差,并拟合出一种无量纲的刚度误差公式。同时以有限元仿真对计算公式进行验证,对误差曲线进行比较,结果表明了较好的一致性,为柔性铰链的设计和加工提供参考。  相似文献   

13.
采用直圆柔性铰链支撑的复合平行四杆机构,设计了一种压电陶瓷(PZT)驱动器的装夹机构.该机构具有导向精度稳定、响应速度快、分辨率高和无耦合运动等优点.从力学理论出发推导了柔性铰链刚度的简化计算公式,运用参数化的分析方法求得了柔性铰链结构参数对装夹机构应力、刚度及有效行程的影响.实验测得刚度和有效行程的理论计算误差分别仅为3.9%和1.4%,表明了该设计方法的可靠性与有效性.  相似文献   

14.
针对微/纳精密操作定位精度要求,基于压电陶瓷驱动方法,设计了一类适用于面内精密定位工作的单自由度柔性微定位平台,采用单自由度柔性铰链实现机构的微/纳米级运动。通过构建柔性微定位平台的运动学模型得到了机构在铰链空间和笛卡尔空间中的位置映射关系,结合有限元仿真分析各位置柔性铰链的柔度特性对机构执行末端位移输出能力的影响,与位置理论计算结果比较说明其有效性。模态分析、驱动刚度分析为后续的动力学问题研究奠定了基础。  相似文献   

15.
柔性铰链微位移放大机构工作性能仿真   总被引:4,自引:0,他引:4  
为了获得足够的机器人工作空间 ,微动并联机器人平台之间的支链均采用了基于柔性铰链的微位移放大机构。本文对微位移放大机构设计方案进行仿真分析。确保压电执行器既不会被弹性力封锁 ,柔性铰链处的应力也不超过许用应力。根据仿真结果设计的微位移放大机构保证了微动并联机器人的工作性能。  相似文献   

16.
提出了一种过程中采用的新型三支链六自由度并联微动机器人结构。采用两端分别带有柔性球铰和柔性旋转铰的支杆以简化结构,整体加工包含三个二自由度单元的基平台来有效减小装配误差,并用压电陶瓷驱动弹性平板获得高分辨率高精度。根据运动影响系数理论对其运动学进行分析,求出了其平动台、支杆和柔性铰链的速度表达式。考虑柔性铰链的弹性变形,基于虚功原理建立了其刚度模型。 分析了此类并联微动机器人的设计目标和柔性铰链设计原则,采用模块化精密定位控制器设计了控制系统。实验结果表明,所设计的微动机器人可达到纳米级精度, 简化了六支链六自由度并联微动机器人的复杂结构,减小了装配误差。  相似文献   

17.
为研究柔性构件对系统运动特性的影响,对空间3-RRRU并联机器人进行了动力学建模及耦合特性的仿真分析。应用矢量闭环法对空间并联机构的逆运动学进行求解,推导出各个构件位置、速度、加速度的变化规律;根据第一类Lagrange方程建立空间全刚性并联机器人的逆动力学模型;运用MATLAB软件对空间并联机构进行仿真,并对动力学数值结果和仿真结果进行对比,以验证模型的正确性。基于ANSYS软件和ADAMS软件,对空间并联机构中的空间梁单元进行柔性替换,通过建立空间刚柔耦合并联机器人模型,分析机构在运动状态下展现出的耦合特性,并与空间全刚性并联机器人进行比较。结果表明:两类模型的末端执行器的运动趋势一致,轨迹误差在0.000 7~0.419 4 mm范围内;梁单元产生的弹性变形对系统运动性能产生了重要影响,因此,建立正确的刚柔耦合动力学模型具有重要的指导意义。  相似文献   

18.
李琦 《工具技术》2010,44(8):65-67
结合现有并联机构与柔索并联机构的特点,设计出一种刚柔结合的并联机构。在机构中加入柔索,达到提高机构精度、减小机构振动的目的。首先系统介绍了机构的构型,然后应用ADAMS仿真软件建立了并联机构的虚拟样机模型,进行了运动学仿真分析,证明了机构设计的合理性。  相似文献   

19.
二元光学激光直写设备高精度传动系统的研究   总被引:1,自引:0,他引:1  
要制作尺寸达200mm×200mm、最小线宽为1μm的二元光学元件,设备传动系统必须满足大行程、亚微米级定位精度 的需求。通过比较滚珠丝杠传动、直线电机传动及摩擦传动的优缺点,提出了采用滚珠丝杠驱动气体静压导轨实现粗定位、压 电陶瓷驱动柔性铰链实现精确定位、用高精度光栅尺实现闭环反馈控制的技术方案。对导轨刚度及固有频率、丝杠刚度及固 有频率、柔性铰链的转角刚度、光栅尺的反馈误差等影响系统精度的主要因素进行了分析。HP5528A双频激光干涉仪的检测 结果表明:传动系统位移灵敏度达到了0.03μm,定位精度小于0.20μm/100mm。  相似文献   

20.
针对目前微纳定位工作台工作空间密度小的问题,设计了一种新型二自由度对称式并联微纳定位工作台。分析了影响平行四边形位移放大机构变形的主要因素;对直圆柔性铰链、平行板柔性铰链和倒圆角直梁型柔性铰链进行刚度计算;采用能量法和位移矩阵得出平行四边形位移放大机构输出力和载物台运动位移的计算公式;优化平台尺寸,并对优化后的结果进行有限元仿真和实验分析。实验后得到设计平台的工作空间尺寸为143.7μm×142.1μm,工作空间密度可达2.521μm~2/mm~2,与同类型平台相比,能够实现较大的工作空间密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号