首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 71 毫秒
1.
针对全变分图像去噪算法中处理边缘区域与平滑区域相互冲突从而导致阶梯效应的问题,提出利用局部梯度阈值对两者进行分开滤波去噪的方法。在分析现有利用小波变换进行噪声预测的基础上,提出更精确的改进预测算法;通过实验,得到局部梯度阈值与噪声方差的关系方程,以及最优梯度阈值的估算方法;给出改进算法的步骤与迭代方法。实验结果表明,该算法能有效去除图像上的高斯噪声、获得较好的边缘保护效果,同时能克服全变分去噪后复原图像出现阶梯效应的问题。  相似文献   

2.
针对整体变分(TV)修复模型易受到梯度的影响而且常常会丢失图像细节信息的缺点,提出了一种基于曲率差分的自适应全变分去噪算法。在联合非线性各向异性扩散滤波器和冲击滤波器对含噪图像做预处理的基础上,通过自适应方式调节正则项和保真项的权重系数,该算法能同时兼顾边缘保留和图像平滑去噪。仿真实验结果表明:与现有的去噪算法相比,该算法在不同强度的脉冲噪声下可以将峰值信噪比提升14%以上,同时将归一均方误差降低43%以上。  相似文献   

3.
Stanley Osher和Martin Burger提出的基于Bregman距离的迭代正则化全变分去噪算法运算速度较快,但是应用于图像去噪时,没有考虑不同区域的灰度分布特性,从而容易导致纹理等重要信息丢失或模糊的缺陷.针对这一现象,提出了一种基于自适应正则化的全变分去噪算法.论文对Osher的去噪模型中的全局正则化参数进行改进,给出了一种根据图像中不同区域的灰度分布特性,自适应选取正则化参数的方法.该算法可以保留图像的边缘和纹理细节信息.实验结果证实了所提算法的有效性,其信噪比较原有方法至少提高1.0 dB以上.  相似文献   

4.
目的 全变分(TV)去噪模型具有较好的去噪效果,但对于图像的弱边缘和纹理细节的保持不够理想。自适应分数阶全变分(AFTV)模型根据图像局部信息,区分图像的纹理区域和非纹理区域,自适应计算投影算法中的软阈值,可较好地保持图像的弱边缘和纹理细节,但该方法当噪声增大时“阶梯”效应比较明显,弱边缘和纹理细节保持效果不够理想。针对该问题,提出一种改进的分数阶全变分去噪算法。方法 该算法在计算残差图像时,用分数阶全变分模型替代整数一阶全变分模型,并根据较精确的残差图像的局部方差区分图像纹理区域和平坦区域,使保真项参数的自适应选取更加合理,提高了算法的去噪性能。结果 针对3种不同类型的噪声图像,将本文模型与TV模型和AFTV模型进行对比实验,并采用峰值信噪比(PSNR)和结构相似性(SSIM)评定去噪效果和纹理保持能力。对于高斯噪声图像,本文算法在PSNR方面比TV模型和AFTV模型分别可平均提高2.72 dB和1.38 dB,SSIM分别可平均提高0.047和0.020。对于椒盐噪声图像,本文算法结合中值滤波算法在PSNR和SSIM方面比传统中值滤波算法分别可平均提高1.308 dB和0.011。对于泊松噪声图像,本文算法在PSNR、SSIM方面与AFTV较接近,比TV分别可提高1.59 dB和0.005。结论 通过对添加不同类型的噪声图像进行实验,结果表明提出的算法在去噪性能上与TV和AFTV相比均有较大提高,尤其对于噪声较大的图像效果更为显著,在去噪效率上与AFTV的时间复杂度相当,时耗接近略有降低。且本文算法普适性较好,能有效去除多种典型类型的噪声。  相似文献   

5.
对受高斯和脉冲混合噪声污染的数字图像去噪方法进行了研究,提出了一种基于噪声检测的自适应总变分(TV)去噪算法。提出的改进算法采用两步迭代框架实现:脉冲噪点检测和全变分图像恢复。第一步中,考虑到脉冲噪声污染的像素点不包含原图像有效信息,采用一种局部统计值,即邻域像素间的随机绝对差排序值(ROAD)估计出噪点的位置;第二步中,采用L2-TV方法进行去噪处理,并对上述过程进行迭代处理,得到去噪图像。在噪点估计过程中引入脉冲噪点水平参数,这样处理的优势在于可更准确地检测出脉冲噪点;而L2-TV去噪方法可很好地去除高斯噪声,两者结合有效地解决了TV算法存在误判图像脉冲噪声为边缘而产生假边缘的问题。与现有典型去噪方法的比较实验表明,该迭代去噪算法,即TV-ROAD算法,既能够去除混合噪声,又可以保留图像细节特征。  相似文献   

6.
为了在图像去噪的同时较好地保持图像的弱边缘和纹理细节,提出基于自适应投影算法的分数阶全变分模型.该模型使用Grünwald-Letnikov分数阶微分替代全变分正则项中的一阶导数,通过将图像投影在全变分球体上以解决分数阶全变分的优化问题.并根据图像的局部信息将图像分为纹理区域和非纹理区域,从而自适应计算投影方法中的软阈值.理论分析和实验均表明,文中方法在去除噪声的同时可以消除块效应,并且能有效保持图像的弱边缘和纹理细节.  相似文献   

7.
针对目前图像去噪方法存在的主要缺陷是仅适用于单一噪声的滤除, 无法解决图像混合噪声去噪的问题, 提出一种加权混合噪声模型, 建立其能量泛函表达式, 利用变分法获得其欧拉—拉格朗日方程并给出其显式差分迭代求解算法。通过对其数值算法的改进, 不仅提高了该模型数值算法的速度和稳定性, 而且在一定程度上避免了降噪后图像的阶梯效应。仿真实验表明, 加权混合噪声去噪算法在去除混合噪声的同时更好地保留了图像的细节信息, 其降噪性能相比现有方法有一定程度的改善。  相似文献   

8.
近年来,国内外学者对于泊松噪声的研究越来越多,在TV模型的基础上提出了不少二阶去噪模型,它们在有效去除噪声的同时,很好地保护了图像边缘细节,但是共同的缺点是产生了“块效应”。针对这一不足,文中提出了一种四阶去噪模型,运用变分原理得到了其相应的欧拉拉格朗日方程,并用梯度下降法求解拉格朗日方程。文中运用差分法对该模型进行了数值求解与仿真,实验结果表明,提出的方法不仅去噪效果良好,而且有效改善了二阶去噪模型中出现的“块效应”,同时有效保护了边缘细节。  相似文献   

9.
截断伪影(又称Gibbs伪影)是MRI常见伪影之一。其产生的原因是K空间的有限采样或者高频数据丢失。基于全变分TV(total variation)的方法来抑制截断伪影。首先把问题转变成求全变分最小值,然后用非线性最优化算法来求解。该算法有良好的边缘保留特性,同时也会导致图像分辨率的下降。在全变分基础上使用拉普拉斯锐化滤波器,实验结果表明该算法可以在保留边界的同时明显提高图像分辨率。  相似文献   

10.
郝锐  彭进业  王大凯 《计算机工程》2009,35(21):211-212
采用传统插值法放大的图像存在边缘锯齿化和边缘模糊化缺点。针对该问题,在分析图像复原全变分模型的基础上,将色度-亮度全变分复原模型用于彩色图像放大,使图像放大问题转化为图像修补问题。实验结果证明,该方法能保持放大后图像边缘的光滑与清晰。  相似文献   

11.
张福美 《计算机应用》2008,28(4):993-994
图像修复是指恢复图像中破损区域的颜色信息或者去除图像中的多余物体。分析了基于整体变分法TV模型以及矢量图像耦合技术的原理,根据矢量图像耦合思想将整体变分法运用到矢量图像中并对矢量图像进行试验。实验结果表明:改进的矢量图像耦合修复模型能较好地修复大块彩色图像的缺失信息和移除多余物体,能保持彩色图像的边缘,且有较好的去噪功能。  相似文献   

12.
目的 许多彩色图像去噪算法未充分利用图像局部和非局部的相似性信息,并且忽略了真实噪声在彩色图像不同区域内分布的差异,对不同图像块和不同颜色通道都进行同等处理,导致去噪图像中同时出现过平滑和欠平滑现象。针对这些问题,本文提出一种自适应非局部3维全变分去噪算法。方法 利用一个非局部3维全变分正则项获取彩色图像块内和块间的相似性信息,同时在优化模型的保真项内嵌入一个自适应权重矩阵,该权重矩阵可以根据每次迭代得到的中间去噪结果的剩余噪声来调整算法在每个图像块、每个颜色分量以及每次迭代中的去噪强度。结果 通过不同的高斯噪声添加方式得到两个彩色噪声图像数据集。将本文算法与其他6个基于全变分的算法进行比较,采用峰值信噪比(peak signal-to-noise ratio, PSNR)和结构相似性(structural similarity, SSIM)作为客观评价指标。相比于对比算法,本文算法在两个噪声图像数据集上的平均PSNR和SSIM分别提高了0.16■1.76 dB和0.12%■6.13%,并获得了更好的图像视觉效果。结论 本文去噪算法不仅更好地兼顾了去噪与保边功能,而且提升了稳定性和鲁棒...  相似文献   

13.
在彩色图像去噪任务中,传统的颜色空间通道之间存在很强的互相关性,使去噪后图像出现颜色突变,影响图像去噪效果。针对该问题,提出一种降低通道之间相关性的颜色空间构造方法,该方法以待去噪图像在小波变换域中系数的聚集特征为依据,利用主成分分析方法确定系数聚集的主方向、次主方向。由主方向和次主方向的基向量确定自适应的颜色空间,在该颜色空间中实现图像去噪。实验结果表明,相比传统的颜色空间,本文所构造的颜色空间去噪无论在视觉效果、峰值性噪比和稀疏特征保真度上,均取得了更好的去噪效果。  相似文献   

14.
基于滤波器的局部自适应全变分图像去噪模型   总被引:1,自引:0,他引:1  
综合利用冲击滤波器和非线性各向异性扩散滤波器对含噪图像做预处理,然后基于边缘检测函数建立反映图像局部特征的自适应权函数,构建能同时兼顾图像平滑去噪与边缘保留的局部自适应性的全变分模型,并建议用本原对偶算法快速求解。实验结果表明,同传统的全变分图像去噪模型相比,该局部自适应全变分模型在消除噪声的同时能很好地保持图像的边缘轮廓和纹理等细节特征,得到的复原图像在客观评价标准和主观视觉效果方面均有所提高。  相似文献   

15.
针对全变分(TV)模型在去除图像噪声时容易产生阶梯效应的缺点,将二阶总广义变分(TGV)作为正则项应用于全变分模型中可以有效地去除阶梯效应,并且还能够更好地保持图像边缘纹理结构;利用非局部均值滤波算法的思想来构造非局部微分算子,将非局部微分算子应用于总广义变分模型中,综合提出了一种基于非局部总广义变分的图像去噪新模型。新模型充分利用了图像的全局信息进行去噪。实验结果显示了该模型的有效性和优越性。  相似文献   

16.
分数阶B样条小波域的图像变分去噪   总被引:1,自引:1,他引:1       下载免费PDF全文
分数阶B样条具有分数阶逼近,可以更好地刻画图像纹理部分。将分数阶B样条小波推广到二维领域,利用分数阶B样条小波进行图像阈值去噪,提出了分数阶B样条小波域图像去噪的变分模型。同传统小波函数与全变差结合模型比较,分数阶B样条小波在保持纹理和去噪方面得到了明显改进。  相似文献   

17.
基于双变量收缩函数的局域自适应图像去噪   总被引:1,自引:0,他引:1  
刘鑫  贺振华  黄德济 《计算机应用》2006,26(5):1030-1031
由于图像小波系数存在很大的层间相关性,引入双变量概率分布模型,基于贝叶斯估计理论,得到了相应的非线性阈值函数(双变量收缩函数);基于层内局域方差估计,利用该收缩函数得到一种局域自适应的图像去噪算法。在实验中,将该算法分别应用到实值离散小波变换域和双树复数小波变换域,并和隐马尔科夫模型的去噪方法做了比较分析。实验表明,复数小波变换的局域自适应收缩图像去噪算法去噪效果最好。  相似文献   

18.
针对小波阈值函数去噪不彻底并且造成图像边缘模糊的问题,提出一种自适应小波阈值和全变分模型相结合的去噪方法。利用小波变换的时频域特性将含噪图像分解得到各维度小波系数,对低频小波系数利用全变分模型去噪,对于高频系数根据不同分解尺度选择不同的最佳阈值去噪,克服了统一阈值的不足,增强了算法的自适应性。理论分析和仿真实验结果表明,所提方法兼顾了小波变换和全变分模型的去噪优点,在有效去除噪声的同时更完整地保留了图像的边缘和细节信息,有较高的结构相似度和峰值信噪比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号