首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two commercially available additive-containing silicon nitride materials were exposed in four environments which ranged in severity from dry oxygen at 1 atm pressure, and low gas velocity, to an actual turbine engine. Oxidation and volatilization kinetics were monitored at temperatures ranging from 1066° to 1400°C. The main purpose of this paper is to examine the surface oxide morphology resulting from the exposures. It was found that the material surface was enriched in rare-earth silicate phases in combustion environments when compared with the oxides formed on materials exposed in dry oxygen. However, the in situ formation of rare-earth disilicate phases offered little additional protection from the volatilization of silica observed in combustion environments. It was concluded that externally applied environmental barrier coatings are needed to protect additive-containing silicon nitride materials from volatilization reactions in combustion environments.  相似文献   

2.
Steam oxidation of silicon carbide (SiC) layer in nuclear fuel particles were performed in flowing argon‐water vapor mixture with a total pressure of 1 bar at 1173‐1673 K. Both the phase composition and the microstructure of the oxide scale on the SiC layer varied with the oxidation temperature. Reaction rates of water vapor with the SiC layer were determined by measuring the oxide scale thickness. It was found that the oxidation of SiC layer follows the parabolic law. The activation energy was calculated to be 103±11 kJ/mol. It is proposed that the rate determine step of the oxidation is the diffusion of water vapor molecules in the oxide scale. The fracture strength of SiC shell after steam oxidation was evaluated using a crush test. The fracture strength decreased with the increase in the oxidation temperature due to the thinning of the SiC layer.  相似文献   

3.
Oxidation and Volatilization of Silica Formers in Water Vapor   总被引:4,自引:0,他引:4  
At high temperatures, SiC and Si3N4 react with water vapor to form a SiO2 scale. SiO2 scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming SiO2 and the other removing SiO2, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved. After steady state is achieved, the oxide found on the surface is a constant thickness, and recession of the underlying material occurs at a linear rate. The steady-state oxide thickness, the time to achieve steady state, and the steady-state recession rate can be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate also can be determined from parameters that describe a water-vapor-containing environment. Accordingly, maps have been developed to show these steady-state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of SiO2 formers in water-vapor-containing environments, such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4.  相似文献   

4.
Oxidation of {111} single-crystal silicon and dense, chemically-vapor-deposited silicon nitride was done in clean silica tubes at temperatures of 1000° to woo°C. The oxidation rates of silicon nitride under various atmospheres (dry O2, wet O2, wet inert gas, and steam) were several orders of magnitude slower than those of silicon under the identical conditions. The activation energy for the oxidation of silicon nitride decreased from 330 to 259 kJ/mol in going from dry O2 to steam while that for Si decreased from 120 to 94 kJ/mol. The parabolic rate constant for Si increased linearly as the water vapor pressure increased. However, the parabolic rate constant for silicon nitride showed nonlinear dependency on the water vapor pressure in the presence of oxygen. The oxidation kinetics of silicon nitride is explained by the formation of nitrogen compounds (NO and NH3) at the reaction interface and the counterpermeation of these reaction products.  相似文献   

5.
Several studies have recently been undertaken to examine the mechanical reliability and thermal stability of silicon nitride ceramic components that are currently being considered for structural application in industrial gas turbines. Specifically, ceramic components evaluated included a bow-shaped silicon nitride nozzle evaluated in an engine test rig, silicon nitride vanes exposed in an engine field test, and an air-cooled silicon nitride vane that is currently under development. Despite the differences in field test conditions all of the exposed silicon nitride ceramic components exhibited a significant material recession arising from the oxidation of silicon nitride and subsequent volatilization of the oxide (i.e., silica). The fracture strength of exposed airfoils was also decreased due to the formation of a subsurface damage zone induced by the turbine environments. In addition, studies indicated that the properties of as-processed ceramic components, especially in airfoil regions, were not always comparable to those generated from the standard specimens with machined surface extracted from production billets. The component characterization efforts provided an important insight into the effect of gas turbine environments on the material recession and mechanical reliability of materials as functions of exposure time and conditions, which were very difficult to obtain from a laboratory scale test.  相似文献   

6.
多晶硅合成过程中副产大量四氯化硅。以四氯化硅为硅源,通过水解反应成功合成了二氧化硅粉体。探讨了反应温度、四氯化硅的加料速度、四氯化硅和水的加料比、循环比等条件对二氧化硅比表面积的影响,并利用X射线粉末衍射仪、傅里叶红外光谱仪、比表面测定仪和粒度分析仪等测试工具对所制备的二氧化硅的结构、粒径等参数进行了表征。实验结果表明:在温度为50 ℃,四氯化硅的加料速度为2.0 L/min,加料比[m(四氯化硅)∶m(水)]为0.10~0.15,循环比为10 h-1的条件下,可制得满足橡胶补强剂要求的二氧化硅粉体。  相似文献   

7.
In the present work, the photo-acoustic emission from nanostructured copper/porous silicon hybrid systems was studied. Copper nanoparticles were grown by photo-assisted electroless deposition on crystalline silicon and nanostructured porous silicon (nanoPS). Both the optical and photo-acoustic responses from these systems were determined. The experimental results show a remarkable increase in the photo-acoustic intensity when copper nanoparticles are incorporated to the porous structure. The results thus suggest that the Cu/nanoPS hybrid systems are suitable candidates for several applications in the field of thermoplasmonics, including the development of sound-emitting devices of great efficiency.  相似文献   

8.
采用预乳化、半连续种子乳液聚合法为聚合工艺,利用无机二氧化硅改性纯丙烯酸酯弹性乳液,使之兼有有机相和无机相的优点,制备有机-无机复合弹性乳液。分别选用3种不同形态的二氧化硅(纳米二氧化硅粉体、硅溶胶、正硅酸乙酯和A-151)进行对比试验,考察了二氧化硅形态对聚合物膜力学性能、吸水率、光学性能、耐热性等性能的影响。结果表明:二氧化硅形态对有机-无机复合弹性乳液涂膜性能有较大影响,二氧化硅以正硅酸乙酯和A-151的加入方式为最佳。  相似文献   

9.
李家亮  牛金叶 《硅酸盐通报》2011,30(5):1197-1202
以甲硅烷(20%甲硅烷+80%氢气)和氨气作为反应前驱体,选择孔隙率为20%左右的多孔石英陶瓷基体,采用CVD法在多孔石英基体表面制备了氮化硅涂层.研究了沉积反应温度、反应压力、反应气体配比以及沉积时间等工艺参数对附着力的影响,确定了CVD法制备氮化硅涂层的最佳工艺参数,通过对所得涂层及复合材料进行抗弯强度和介电性能的表征,探讨了氮化硅涂层对多孔石英基体力学性能和介电性能的影响.  相似文献   

10.
Solar grade silicon can be formed using a YSZ solid oxide membrane (SOM). The SOM membrane is exposed to a complex fluoride flux with dissolved silica at high temperature and electrochemically separated into silicon and oxygen. A failure mode of the SOM membrane by the formation of ‘inner cracks’ was studied, and attributed to yttria depletion in the YSZ, leading to phase transformation from cubic to tetragonal phase. The roles of silica and YF3 in the flux were studied, and it was shown that silica attacks the SOM membrane, while YF3 retards the attack. A detailed mechanism of the yttrium depleted layer (YDL) formation, and its role in the formation of inner cracks is proposed. Based on this study, a new flux composition was designed and tested. The flux composition did not attack the SOM membrane, and Si crystals were produced, demonstrated long-term viability of the Si–SOM process.  相似文献   

11.
At high temperatures in clean oxidizing environments, SiC forms a very protective SiO2 film, but, in environments containing low levels of gaseous alkali salt contaminants or where condensed salts may deposit on the surface, the resistance of the film is significantly reduced. Oxidation kinetics of SiC were measured by continuous thermogravimetric analysis in a controlled environment containing CO2, H2O, and O2 plus low levels of potassium-containing salts. Potassium was found to be incorporated into the SiO2 scale and to significantly change its transport properties and its morphology. The rate of scale formation was found to increase directly in proportion to K in the scale. A change in mechanism was observed when water vapor was added to the reacting gas stream.  相似文献   

12.
The oxidation behavior of a polymer-derived amorphous silicon carbonitride (SiCN) ceramic was studied at temperature range of 900°–1200°C using fully dense samples, which were obtained using a novel pressure-assisted pyrolysis technique. The oxidation kinetics was investigated by measuring the thickness of oxide layers. The data were found to fit a typical parabolic kinetics. The measured oxidation rate constant and activation energy of the SiCN are close to those of CVD and single-crystal SiC. The results suggest that the oxidation mechanism of the SiCN is the same as that of SiC: oxygen diffusion through a silica layer.  相似文献   

13.
Spark plasma sintered pure silicon carbide (SiC) and nanostructured ferritic alloy‐silicon carbide (NFA‐SiC) systems are investigated in a water vapor containing air atmosphere at elevated temperatures up to 1000°C. Both of them exhibit excellent corrosion resistance with a dense amorphous SiO2 layer as the main oxidation barrier. Crystalline α‐quartz and α‐cristobalite from the oxidation of silicides and SiC, respectively, further benefit the corrosion resistance. For the new NFA‐SiC system, the original graphite and silicide phases can be desirably sustained. The NFA‐SiC materials have promising applications in high temperature moist environments and are especially important for nuclear reactor cladding.  相似文献   

14.
Sintering of fine silicon powder was studied under controlled water vapor pressures using the Temperature–Pressure–Sintering Diagram approach. The water vapor pressure surrounding the sample was deduced from thermogravimetric analysis and related to the water content of the incoming gas flux with a simple mass transfer model. The thickness of the silica layer covering silicon particles was then monitored by the water vapor pressure and the microstructure evolution and densification during sintering could be controlled. Stabilizing the silica layer indeed inhibits grain coarsening and allows better densification of the compacts under humidified atmosphere as compared to dry atmosphere.  相似文献   

15.
Oxidation behavior of porous silicon under various environments of dry and wet air, and solution with and without appropriate oxidant at mild temperatures has been investigated. The progress of oxidation was followed by infrared spectroscopy. The presence of water vapor greatly accelerates the oxidation rate in comparison with the rate in dry air. The oxidized states are clarified with the help of oxidation experiments of partially hydrogen-desorbed porous silicon, which does not contain SiH2 and SiH3 as the hydride species. An oxidation mechanism is proposed to explain that oxidation is accelerated in the presence of water vapor and at the partially hydrogen-desorbed porous silicon. Further, oxidation behavior of porous silicon in solution containing appropriate oxidant is also investigated. The rate is very rapid and the oxidation does not produce the back-bond oxidized state of OySiHx in contrast to the oxidation in air.  相似文献   

16.
The high-temperature oxidation of additively manufactured and chemically vapor infiltrated (3D-printed SiC) has been compared to chemical vapor deposited (CVD) SiC. 100-h isothermal exposures were conducted at 1425° and 1300°C at 1 atm under both dry air and steam environments. A SiC reaction tube was utilized to reduce silica volatility. After steam oxidation at 1425° and 1300°C, on the 3D-printed SiC surface, which was intrinsically rougher than the CVD surface, scales were 70%–90% thicker at the convex regions compared to concave/flat regions. In the convex regions, large cracks perpendicular to the oxidizing interface were observed. After dry air oxidation, scale thicknesses were comparable between 3D-printed SiC and CVD SiC, regardless of geometry. Finite element modeling, conducted to elucidate the relationship between SiC geometry and ß- to α-cristobalite transformation stress, determined cristobalite transformation tensile stresses to be on the order of 103 MPa during cool down, assuming a 6 vol% reduction. Compared to flat SiC substrates, tensile transformation stresses were elevated at concave regions and relaxed at convex regions. Combined with specimen mass gain (accounting for the rougher surface) of 3D-printed SiC being 15%–32% higher for 3D-printed SiC after 1300°C and 1425°C steam oxidation, the work presented concludes that the increased oxidation of 3D-printed SiC is primarily caused by tensile hoop stresses driven by oxidation volume expansion. Lastly, the efficacy of the 3D-printing method is demonstrated through the production of tristructural isotropic imbedded 3D-printed SiC fuel forms.  相似文献   

17.
半导体集成电路用表面钝化膜的研究   总被引:3,自引:0,他引:3  
对高性能高可靠性集成电路来说,表面钝化已成为不可缺少的工艺措施之一。本文分析了目前应用最广泛的几种无机表面钝化膜(SiO2,Al2O3和Si3N4)的特点,并指出氮化硅薄膜是半导体集成电路中最具应用前景的表面钝化材料,发展低温的热化学气相沉积(CVD)工艺来沉积氮化硅表面钝化膜是集成电路发展的必然趋势,而开发新的能满足低温沉积氮化硅薄膜的硅源,氮源前驱体是解决这一难题的有效方法,并对这些前驱体物质的设计原则进行了阐述。  相似文献   

18.
A nanostructured epoxy‐silica hybrid based on epoxy systems with interpenetrating silica domains was designed for a possible use as a structural adhesive for civil engineering applications. Silica domains were obtained in situ during the curing of the thermosetting matrix by means of the sol‐gel process, which was able to chemically bind the organic phase with the inorganic one. To assess the ability of the developed epoxy‐silica hybrid system of overcoming some of the well known deficiencies of conventional epoxy adhesives used in civil engineering field, the environmental effects on the adhesion properties of these novel systems were investigated. First, flexural tests were undertaken on cast epoxy‐silica specimens to determine the mechanical properties of the nanostructured adhesive when exposed to different environmental conditions, that is, moderate temperature or immersion in water. For comparison purposes, a control sample of epoxy resin, representative of a commercially available adhesive, was tested after the same exposure regimes. In order to assess their durability in service, concrete/concrete joints, bonded or with the hybrid epoxy‐silica or with the control epoxy adhesive, were exposed to the same environmental conditions and subjected to adhesion tests according to the “slant shear test.” The results obtained on both cast specimens and concrete/concrete adhesive joints proved the significantly better retention of properties of the nanostructured organic–inorganic adhesive compared to the control resin after exposure to moderate temperature or immersion in water. This constitutes a distinct advantage of the hybrid system over the corresponding conventional epoxy resins cured at ambient temperature for civil engineering applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42514.  相似文献   

19.
The article examines degradation of a SiC-based fiber composite containing Tyranno ZMI fibers in water vapor at elevated temperatures (800°C and 1100°C). Degradation is characterized through mechanical tests under cyclic and quasi-static tensile loading in the near-threshold regime, at stresses at or slightly above the matrix cracking limit. These tests are augmented by examinations of fracture surfaces and polished cross-sections, measurements of fracture mirror radii, and measurements of interfacial debond toughness and sliding resistance. Degradation involves highly localized consumption of fibers through reactions of water vapor with the fibers and the BN coatings in regions adjacent to the few matrix cracks present at low stresses; the global hysteresis response and the average interfacial properties are minimally affected. Boria formed by oxidation of BN appears to play a fluxing role; it combines with silica on the fibers to form a non-protective molten glass. Inhomogeneous fiber consumption leads to stress concentrations in the fibers and hence reduced fiber strength. Spatial variations in the degradation process occur at two length scales: at the macroscopic scale, because of cracking of the external CVI SiC overcoat and subsequent water ingress through the cracks, and at the tow-scale, because of cracking of the CVI SiC around the tows. Parsing the kinetic processes over the two length scales remains a significant challenge.  相似文献   

20.
Boria effects on accelerated SiC oxidation kinetics were investigated by conducting thermogravimetric analysis on SiC substrates coated with sol-gel derived borosilicate glass isothermally exposed to dry O2 and argon at 800°C and 1200°C for 100 hours. Boria concentrations in the glass coatings were 0, 14-38, and 92-94 mol%, balance silica. Accelerated weight gain was observed for SiC exposures in dry O2 at 800°C when boria concentrations were ≥ 92 mol%, corroborated by oxide thickness ranging from 3.5 to 10 µm. The oxide thickness predicted for pure SiC exposed to these conditions in the absence of boria is 0.15 µm. Microstructural analysis of SiC surfaces after oxide removal revealed that boria etched the underlying SiC substrate. Oxidation exposures at 1200°C in dry O2 suppressed boria effects on accelerating SiC oxidation kinetics due to rapid boria volatilization coupled with the formation of a protective thermally grown silica scale. Accelerated weight gain or oxide growth did not occur with argon exposures at either temperature. A new mechanism for boria-accelerated SiC surface-reaction kinetics is presented based on evidence for boria etching of SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号