共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper discusses the application of neural adaptive control strategy to the problem of cutting force control in high speed end milling operations. The research is concerned with integrating adaptive control and a standard computer numerical controller (CNC) for optimizing a metal-cutting process. It is designed to adaptively maximize the feed rate subject to allowable cutting force on the tool, which is very beneficial for a time consuming complex shape machining. The purpose is to present a reliable, robust neural controller aimed at adaptively adjusting feed rate to prevent excessive tool wear, tool breakage and maintain a high chip removal rate. Numerous simulations and experiments are conducted to confirm the efficiency of this architecture. 相似文献
2.
基于混沌和差分进化的混合粒子群优化算法 总被引:4,自引:0,他引:4
研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到种群初始化操作中。在算法进化过程中,通过一种粒子早熟判断机制,在基本粒子群优化算法中引入了差分变异、交叉和选择操作,对早熟粒子个体进行差分进化操作,从而维持了种群的多样性并有效避免了算法陷入局部最优。仿真结果表明,相比于粒子群优化算法和差分进化算法(DE),CDEHPSO算法具有收敛速度快、搜索能力强的优点。 相似文献
3.
针对目前污水处理系统能耗过大,处理效果差等问题,提出了基于改进型粒子群算法的优化控制;采用粒子群差分进化算法(PSO-DE)可以提高粒子全局搜索能力与收敛速度,克服粒子早熟现象;在实际应用中建立以溶解氧浓度(DO)与污泥排放量(Qw)为变量,以能耗与出水水质为约束条件的数学模型,通过算法全局寻优求解,验证结果表明该算法能保证出水水质前提下降低污水处理能耗。 相似文献
4.
半方差约束下的模糊随机收益率贷款组合优化模型 总被引:2,自引:1,他引:1
银行贷款的收益率在很多情况下具有模糊随机性。将贷款收益率刻画为模糊随机变量,使用半方差作为风险度量方式,建立半方差约束下的模糊随机收益率贷款组合优化模型,目的是在一定的半方差约束和置信水平下,最大化贷款组合的收益率不小于预置收益率的本原机会测度。应用集成模糊随机模拟、神经网络、遗传算法的混合智能算法进行求解,最后通过实例验证了模型和算法的可行性和有效性。 相似文献
5.
基于粒子群优化算法的多交叉口信号配时* 总被引:4,自引:1,他引:3
以城市道路多个单点信号控制交叉口组成的绿波系统为研究对象,对绿波系统的交叉口信号配时优化进行研究。通过对路段和干线机动车流进行协调控制设计,以西安市某两相邻交叉口晚高峰时段各进口道的交通量、通行能力、饱和流量以及各交叉口进口道的实际车均延误时间为约束,确定各交叉口的信号周期及各相位有效绿灯时长,使得干线延误量最小。设计了PSO算法的编码方式,分别采用PSO算法、灾变PSO算法和二阶振荡PSO算法对多交叉口交通信号配时进行优化计算。仿真实验表明,二阶振荡PSO算法在该实例中表现最优。 相似文献
6.
基于PSO的考虑完整费用的证券组合优化研究 总被引:1,自引:0,他引:1
通过分析中国证券市场证券交易不可拆分、不能卖空的特点以及现存的各种交易费用,建立一个考虑完整交易费用的证券投资组合优化模型,同时给出一个应用粒子群算法(PSO)求解的实例。结果证明该证券投资组合优化模型的完整性和有效性,也表明PSO算法可以快速准确地求解证券投资组合优化问题。 相似文献
7.
基于粒子群位移转移的思想,改变遗传算法的变异规则,提出了一种新的混合遗传算法。利用3个benchmark函数测试了新的混合算法的性能,并将测试结果与标准遗传算法进行了比较。提出了一种多阶段半方差投资选择模型,并将混合算法应用在多阶段半方差投资选择问题的求解上。 相似文献
8.
9.
董恩梅 《电脑编程技巧与维护》2013,(22):62-63
粒子群优化算法是模拟鸟类觅食的行为思想的随机搜索算法,主要是通过迭代寻找最优解.将模糊积分技术引入优化算法调整粒子的多样性的同时动态改变惯性权重,以此来提高粒子的搜索能力.仿真实验结果表明,该方法大大提高了搜索过程中粒子的多样性,并缩短了粒子的搜索时间,保持快速的收敛性的同时获得了算法最优解. 相似文献
10.
11.
Reservoir flood control operation (RFCO) is a complex multi-objective optimization problem (MOP) with interdependent decision variables. Traditionally, RFCO is modeled as a single optimization problem by using a certain scalar method. Few works have been done for solving multi-objective RFCO (MO-RFCO) problems. In this paper, a hybrid multi-objective optimization approach named MO-PSO–EDA which combines the particle swarm optimization (PSO) algorithm and the estimation of distribution algorithm (EDA) is developed for solving the MO-RFCO problem. MO-PSO–EDA divides the particle population into several sub-populations and builds probability models for each of them. Based on the probability model, each sub-population reproduces new offspring by using PSO based and EDA methods. In the PSO based method, a novel global best position selection method is designed. With the help of the EDA based reproduction, the algorithm can lean linkage between decision variables and hence have a good capability of solving complex multi-objective optimization problems, such as the MO-RFCO problem. Experimental studies on six benchmark problems and two typical multi-objective flood control operation problems of Ankang reservoir have indicated that the proposed MO-PSO–EDA performs as well as or superior to the other three competitive multi-objective optimization algorithms. MO-PSO–EDA is suitable for solving MO-RFCO problems. 相似文献
12.
《Expert systems with applications》2014,41(8):3901-3914
This paper studies a nonlinear control policy for multi-period investment. The nonlinear strategy we implement is categorized as a kernel method, but solving large-scale instances of the resulting optimization problem in a direct manner is computationally intractable in the literature. In order to overcome this difficulty, we employ a dimensionality reduction technique which is often used in principal component analysis. Numerical experiments show that our strategy works not only to reduce the computation time, but also to improve out-of-sample investment performance. 相似文献
13.
This paper introduces a new evolutionary algorithm with a globally stochastic but locally heuristic search strategy. It is implemented by incorporating a modified micro-genetic algorithm with two local optimization operators. Performance tests using two benchmarking functions demonstrate that the new algorithm has excellent convergence performance when applied to multimodal optimization problems. The number of objective function evaluations required to obtain global optima is only 3.5–3.7% of that of using the conventional micro-genetic algorithm. The new algorithm is used to optimize the design of an 18-bar truss, with the aim of minimizing its weight while meeting the stress, section area, and geometry constraints. The corresponding optimal design is obtained with considerably fewer computational operations than required for the existing algorithms. 相似文献
14.
混合遗传算法及与标准遗传算法对比研究 总被引:1,自引:1,他引:1
文章详尽地阐述了1996年Pham和Jin提出的一种运用改进繁殖机制的遗传模型,称为混合遗传算法(HGA,HybridGeneticAlgorithm),并对HGA和GA(GeneticAlgorithm)的效能进行了对比性分析。理论与实验结果表明混合遗传算法收敛性明显快于标准遗传算法。 相似文献
15.
粒子群优化算法中惯性权值调整的一种新策略 总被引:5,自引:1,他引:5
惯性权值的设置对粒子群优化(PSO)算法的性能起着关键作用,现有的基于惯性权值的改进算法提高了算法的性能,但都把惯性权值作为全局参数,很难控制算法的搜索能力。本文在充分分析惯性权值的关键作用基础上给出一种新的惯性权值调整策略及其相应的粒子群优化算法,使用不同的惯性权值更新同一代种群。测试结果表明,新算法提高了算算法的性能,并具有更快的收敛速度和跳出局部最优的能力。 相似文献
16.
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。 相似文献
17.
Rahib H. Abiyev Mustafa Menekay 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2007,11(12):1157-1163
This paper presents the development of fuzzy portfolio selection model in investment. Fuzzy logic is utilized in the estimation of expected return and risk. Using fuzzy logic, managers can extract useful information and estimate expected return by using not only statistical data, but also economical and financial behaviors of the companies and their business strategies. In the formulated fuzzy portfolio model, fuzzy set theory provides the possibility of trade-off between risk and return. This is obtained by assigning a satisfaction degree between criteria and constraints. Using the formulated fuzzy portfolio model, a Genetic Algorithm (GA) is applied to find optimal values of risky securities. Numerical examples are given to demonstrate the effectiveness of proposed method. 相似文献
18.
Portfolio theory deals with the question of how to allocate resources among several competing alternatives (stocks, bonds), many of which have an unknown outcome. In this paper we provide an overview of different portfolio models with emphasis on the corresponding optimization problems. For the classical Markowitz mean-variance model we present computational results, applying a dual algorithm for constrained optimization. 相似文献
19.
为了降低物流系统的总费用,对车辆优化调度模型进行了改进,考虑了库房容量和时间窗两方面的因素,以总的耗费成本为目标,采用免疫粒子群优化(PSO)算法对此多库房车辆调度模型进行了优化求解。仿真结果表明免疫PSO比PSO更有效、更优越。 相似文献
20.
研究PID控制系统优化问题,工业控制被控对象均具有非线性、时变和大时滞性,引起系统的品质性能差,传统的线性控制难以达到所要求精度。为了提高系统控制精度,利用PID控制器各增益参数与偏差信号间的非线性关系,提出一种非线性PID控制算法。首先将PID参数转化为优化问题,然后采用粒子群算法的全局、并行搜索能力对非线性控制参数进行求解,得到一组最优的PID控制参数。仿真结果表明,相对于传统线性PID控制,非线性PID控制器超调小,调节时间短,并提高了控制精度,有效解决了传统PID难以准确控制非线性对象的难题。 相似文献