共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
基于深度卷积神经网络的人脸识别技术综述 总被引:1,自引:0,他引:1
《计算机应用与软件》2018,(1)
人脸识别是计算机视觉的重要应用之一,广义的人脸识别包含图像采集、人脸检测、人脸对齐、特征表示等过程。人脸识别的发展史主要是人脸特征表示方法的变迁史。针对特征的表示方法,从人脸识别技术的发展历史、研究现状和未来发展三个方面进行综述:分阶段对传统的几类经典的人脸识别算法进行回顾和总结;以深度学习算法的诞生过程为切入点,重点分析了在人脸识别中取得突破性进展的深度卷积神经网络DCNN(deep convolutional neural networks)的技术思想和关键问题;针对人脸识别和深度学习算法的重大挑战,展望了未来可能存在的发展方向。 相似文献
5.
蔡靖;谷承睿;刘光达;孙慧慧 《电子技术应用》2024,(11):42-46
近期,人脸识别技术在社会上广受关注,其非接触式的识别特性相较于指纹等传统接触式识别方法展现出明显优势。在深度学习领域,由于传统卷积神经网络在人脸识别任务上的准确性和速度尚有提升空间,因此提出采用改进的AlexNet卷积神经网络进行人脸识别。通过实验验证,与传统卷积网络相比,改进后的AlexNet在人脸识别上不仅准确度更高,而且识别过程更为稳定。 相似文献
6.
随着深度学习的发展,近年来人脸识别借助深度学习技术取得了巨大突破。但是在已有的基于深度学习的人脸识别框架中,各个任务(人脸鉴别、认证和属性分类等)都是相互独立设计、运作的,使得整体算法低效、耗时。针对这些问题,提出一种基于多任务框架的深度卷积网络。通过将人脸鉴别、认证和属性分类同时作为网络目标函数,端到端地训练整个深度卷积网络,算法简洁高效。此网络可以同时完成上述三个任务,不需要额外的步骤。实验结果显示,即使在有限的数据支持下,该方法依然能够取得不错的性能,在人脸识别权威数据集LFW上获得了97.3%的精度。 相似文献
7.
针对目前食物识别系统中网络模型参数量多、模型较大的问题,提出一种23层结构、参数量只有204k的网络模型,使用基本构造块(7×7、5×5、3×3)生成特征图,用不同感受野的2个池化层来融合卷积层的特征图,再用1×1的卷积核进行非线性组合,然后连接到空间金字塔池化层,最后在softmax分类器中分类.在公开数据集上的实验... 相似文献
8.
针对复杂卷积神经网络(CNN)在中小型人脸数据库中的识别结果容易出现过拟合现象,提出一种基于改进CNN网络与集成学习的人脸识别算法。改进CNN网络结合平面网络和残差网络的特点,采用平均池化层代替全连接层,使得网络结构简单且可移植性强。在改进CNN网络的基础上,利用基于投票法的集成学习策略将所有个体学习器结果凸组合为最终结果,实现更准确的人脸识别。实验结果表明,该算法在Color FERET、AR和ORL人脸数据库上的识别准确率分别达到98.89%、99.67%和100%,并且具有较快的收敛速度。 相似文献
9.
为了解决传统前端行人检测算法准确率低以及鲁棒性差的问题,提出将前端嵌入式设备与人工智能芯片搭载的轻量级神经网络相结合的方法,以实现在前端嵌入式设备中完成更加准确、稳定的行人检测.针对前端嵌入式设备性能不足的问题,提出一种轻量级卷积神经网络模型,通过对网络框架的重新设计以及使用聚类分析重新定义候选框尺寸的方法,大大减少网... 相似文献
10.
11.
卷积神经网络在基于视觉的机器人抓取检测任务上取得了较好的检测效果,但是大多数方法都有太多的计算参数,不适合资源有限的系统。针对这个问题,基于SqueezeNet轻量级神经网络,结合DenseNet多旁路连接加强特征复用的思想,提出了轻量级抓取检测回归模型SqueezeNet-RM(SqueezeNet Regression Model),并使用SqueezeNet-RM从RGB-D图像中提取多模态特征,预测二指机器人夹持器的最佳抓取位姿。在标准的康奈尔抓取数据集上,提出的轻量级抓取检测网络与经典的抓取检测方法相比,在保证检测准确率不降低的情况下,模型占用更少的存储空间,表现出更快的检测速度和更高的泛化性能,所提出的模型占用的存储空间比AlexNet模型减少86.97%,平均检测速度快3倍,适用于FPGA(Field Programmable Gate Array)或者资源受限的移动机器人抓取检测系统。 相似文献
12.
13.
14.
15.
颜冰 《网络安全技术与应用》2022,(6):47-49
将卷积神经网络应用到人脸识别的领域当中,能够有效提升识别工作落实的准确程度,最终与大数据和云计算等技术相互配合,就能够构建成为一个比较完整的人脸检测和识别系统,目前我国常见的此类系统,识别工作落实的准确率已经能够达到>97%的程度。本文先分析了卷积神经网络的工作原理以及特点,又在此基础上设计和规划了实际的人脸识别实现策略,希望能够为相关工作的落实提供合理参考。 相似文献
16.
目前基于深度学习的人脸识别方法存在识别模型参数量大、特征提取速度慢的问题,而且现有人脸数据集姿态单一,在实际人脸识别任务中无法取得好的识别效果。针对这一问题建立了一种多姿态人脸数据集,并提出了一种轻量级的多姿态人脸识别方法。首先,使用多任务级联卷积神经网络(MTCNN)算法进行人脸检测,并且使用MTCNN最后包含的高层特征做人脸跟踪;然后,根据检测到的人脸关键点位置来判断人脸姿态,通过损失函数为ArcFace的神经网络提取当前人脸特征,并将当前人脸特征与相应姿态的人脸数据库中的人脸特征比对得到人脸识别结果。实验结果表明,提出方法在多姿态人脸数据集上准确率为96.25%,相较于单一姿态的人脸数据集,准确率提升了2.67%,所提方法能够有效提高识别准确率。 相似文献
17.
基于残差量化卷积神经网络的人脸识别方法 总被引:1,自引:0,他引:1
针对大规模人脸识别问题,基于残差学习的超深卷积神经网络模型能取得比其他方法更高的识别精度,然而模型中存在的海量浮点参数需要占用大量的计算和存储资源,无法满足资源受限的场合需求.针对这一问题,本文设计了一种基于网络参数量化的超深残差网络模型.具体在Face-ResNet模型的基础上,增加了批归一化层和dropout层,加深了网络层次,对网络模型参数进行了二值量化,在模型识别精度损失极小的情况下,大幅压缩了模型大小并提升了计算效率.通过理论分析与实验验证了本文设计方法的有效性. 相似文献
18.
《计算机工程与应用》2019,(22):140-145
由于最近卷积神经网络在计算机视觉任务中的发展,深度人脸识别方法的性能得到了显著提高。现有的深度人脸模型将人脸识别任务视为一个分类任务或度量学习任务,旨在学习到具有区分度的人脸特征,但是很少能达到类内距离小、类间距离大的特点。损失函数作为监督信号,在卷积神经网络学习人脸特征时起到重要的作用。提出基于余弦距离的Softmax损失函数(Cosine Softmax Loss,CSL),让人脸特征区分度更高。使用相同的网络模型和训练数据集,在LFW和YTF等数据集上的实验结果验证了所提方法的优越性。 相似文献
19.
卷积神经网络是一种很好的特征提取器,但却不是最佳的分类器,而极限学习机能够很好地进行分类,却不能学习复杂的特征,根据这两者的优点和缺点,将它们结合起来,提出一种新的人脸识别方法。卷积神经网络提取人脸特征,极限学习机根据这些特征进行识别。本文还提出固定卷积神经网络的部分卷积核以减少训练参
数,从而提高识别精度的方法。在人脸库ORL和XM2VTS上进行测试的结果表明,本文的结合方法能有效提高人脸识别的识别率,而且固定部分卷积核的方式在训练样本少时具有优势。 相似文献