首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) ceramics modified with a complex Zr/Si/O-based additive were studied. ZrB2 ceramics with 5–20 vol.% additions of Zr/Si/O-based additive were densified to >95% relative density at temperatures as low as 1400°C by hot-pressing. Improved densification behavior of ZrB2 was observed with increasing additive content. The most effective additive amount for densification was 20 vol.%, hot-pressed at 1400°C (∼98% relative density). Microstructural analysis revealed up to 7 vol.% of residual second phases in the final ceramics. Improved densification behavior was attributed to ductility of the silicide phase, liquid phase formation at the hot-pressing temperatures, silicon wetting of ZrB2 particles, and reactions of surface oxides. Room temperature strength ranged from 390 to 750 MPa and elastic modulus ranged from 440 to 490 GPa. Vickers hardness ranged from 15 to 16 GPa, and indentation fracture toughness was between 4.0 and 4.3 MPa·m1/2. The most effective additive amount was 7.5 vol.%, which resulted in high relative density after hot-pressing at 1600°C and the best combination of mechanical properties.  相似文献   

2.
A study has been carried out to examine the effect of LaB6 addition on the compressive creep behavior of ZrB2-SiC composites at 1300–1400°C under stresses between 47 and 78 MPa in laboratory air. The ZrB2-20 vol% SiC composites containing LaB6 (10% in ZSBCL-10 and 14% in ZSBCL-14) besides 5.6% B4C and 4.8% C as additives were prepared by spark plasma sintering at 1600°C. Due to cleaner interfaces and superior oxidation resistance, the ZSBCL-14 composite has exhibited a lower steady-state creep rate at 1300°C than the ZSBCL-10. The obtained stress exponent (n ∼ 2 ± 0.1) along with cracking at ZrB2 grain boundaries and ZrB2-SiC interfaces are considered evidence of grain boundary sliding during creep of the ZSBCL-10 composite. However, the values of n ∼ 1 and apparent activation energy ∼700 kJ/mol obtained for the ZSBCL-14 composite at 1300–1400°C suggest that ZrB2 grain boundary diffusion is the rate-limiting mechanism of creep. The thickness of the damaged outer layer containing cracks scales with temperature and applied stress, indicating their role in facilitating the ingress of oxygen causing oxide scale growth. Decreasing oxidation-induced defect density with depth to a limit of ∼280 μm, indicates the predominance of creep-based deformation and damage at the inner core of samples.  相似文献   

3.
A volatility diagram of zirconium carbide (ZrC) at 1600, 1930, and 2200°C was calculated in this work. Combining it with the existing volatility diagrams of ZrB2 and SiC, the volatility diagram of a ternary ZrB2‐SiC‐ZrC (ZSZ) system was constructed in order to interpret the oxidation behavior of ZSZ ceramics. Applying this diagram, the formation of ZrC‐corroded and SiC‐depleted layers and the oxidation sequence of each component in ZSZ during oxidation and ablation could be well understood. Most of the predictions from the diagrams are consistent with the experimental observations on the oxidation scale of dense ZrB2‐SiC‐ZrC ceramics/coatings after oxidation at 1600°C or ablation at 1930 and 2200°C. The reasons for the discrepancy are also briefly discussed.  相似文献   

4.
This research work deals with the investigation of erosive wear of spark plasma sintered ZrB2-SiC composites with variation in angle of incidence (30°, 60°, and 90°), test temperature (room and 800°C) and SiC content (10, 20, and 30 vol.%). Results indicate a large variation in erosion rate from 2.13 to 75.45 mm3/kg with change in angle of incidence, test temperature, and SiC content. Erosion rate decreased with the decrease in angle of incidence, increase in temperature, and increase in SiC content. With increase in SiC content from 10 to 30 vol.%, a maximum reduction of 68% in erosion rate obtained at shallow incidence and room temperature, and a maximum reduction of 78% in erosion rate obtained at shallow incidence and 800°C. SEM-EDS and XRD analyses indicate that formation of B2O3 and SiO2-rich protective surface is responsible for high temperature erosion resistance of ZrB2-SiC composites.  相似文献   

5.
The densification behavior and mechanical properties of ZrB2-based composites were investigated. The results demonstrated that the fully dense ZrB2-based composites could be obtained at lower sintering temperature (1600°C) and pressure (30 MPa) when the content of HfSi2 was above 20 vol.%. The as-sintered composite was a special core–shell structure, with ZrB2 as the core and (Zr, Hf)B2 solid solution as the shell. The core–shell structure resulted from the diffusion of Hf atom into the boride matrix, which could accelerate the densification. In addition, the intergranular liquid phase induced by the HfSi2 addition filled the micropores of the composites effectively during the sintering. When the content of HfSi2 increased to 20 vol.%, its compressive strength, hardness, and fracture toughness all reached the maximum values, which were 1617 MPa, 15.99 GPa, and 2.44 MPa m1/2, respectively.  相似文献   

6.
In this study, near-fully dense ZrB2–SiC–VC (75-20-5 vol%) composite was manufactured through hot pressing at 1850°C under the pressure of 40 MPa for 60 min. Then the oxidation examination of the composite was carried out under different durations and temperatures. The microstructure and phase evolution after hot pressing and oxidation processes were examined by scanning electron microscopy, and X-ray diffractometry. The VC addition led to the formation of ZrC and VSi2 phases, which assisted the densification of the composite by removing ZrO2 from the particles’ surface. The oxides of ZrO2, SiO2, ZrSiO4, V2O5, and VO2 formed distinct layers on the sample during the oxidation at 1700°C for 4 h with a parabolic regimen and activation energy of 177.5 kJ/mol.  相似文献   

7.
The oxidation of ZrB2 nanoparticles was observed at high temperature of 1500°C under low oxygen partial pressure of 5 × 10?2 Pa by an environmental transmission electron microscope. The results demonstrate that the oxidation starts on the surface of ZrB2 nanoparticles with decomposition of ZrB2 into ZrO2 and B2O3. The nucleation and growth of ZrO2 on the surface of ZrB2 proceed with B2O3 being evaporated.  相似文献   

8.
《Ceramics International》2016,42(16):18657-18665
The present study has been conducted in order to investigate the effect of the surface morphology of SiC inner coating on the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating for C/C composites. The microstructure of SiC inner coatings prepared by chemical vapor deposition and pack cementation at different temperatures were analyzed by X-ray diffraction, scanning electron microscopy, and 3D Confocal Laser Scanning Microscope. Tensile bonding strength and oxyacetylene ablation testing were used to characterize the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating, respectively. Results show that SiC inner coating prepared by chemical vapor deposition has a smooth surface, which is not beneficial to improve the bonding strength and ablation resistance of the sprayed ZrB2-SiC coating. SiC inner coating prepared by pack cementation at 2000 °C has a rugged surface with the roughness of 72.15 µm, and the sprayed ZrB2-SiC coating with it as inner layer exhibits good bonding strength and ablation resistance.  相似文献   

9.
To improve the emissivity of ZrB2/SiC coatings for serving in more serious environment, ZrB2/SiC coatings with varying contents of high emissivity Sm2O3 were fabricated using atmospheric plasma spraying. The microstructure, infrared radiative performance and anti-ablation behaviour of the modified coatings were investigated. The results showed that as the content of Sm2O3 increased, the density of the coatings increased because of the low melting point of Sm2O3. When the content of Sm2O3 was 10 vol%, the coating had the highest emissivity in the 2.5–5 μm band at 1000 °C, up to 0.85, because of the oxygen vacancies promoting additional electronic transitions. Due to the high emissivity, the surface temperature of the coating modified with 10 vol% Sm2O3 decreased by 300 °C, which led to little volatilisation of the sealing phase. Further, the mass ablation ratio of the above coating was 3.19 × 10?4 g/s, decreasing 31% compared to that of a ZrB2/SiC coating. The formed dense surface structure of the coatings showed considerable oxygen obstructive effects. These findings indicate that the modified coatings show considerable anti-ablation performance, which provides effective anti-ablation protection for the C/C composite substrate.  相似文献   

10.
《Ceramics International》2022,48(4):5187-5196
To investigate the silicon/graphite ratio and temperature on preparation and properties of ZrB2–SiC coatings, ZrB2, silicon, and graphite powders were used as pack powders to prepare ZrB2–SiC coatings on SiC coated graphite samples at different temperatures by pack cementation method. The composition, microstructure, thermal shock, and oxidation resistance of these coatings were characterized and assessed. High silicon/graphite ratio (in this case, 2) did not guarantee higher coating density, instead could be harmful to coating formation and led to the lump of pack powders, especially at temperatures of 2100 and 2200 °C. But residual silicon in the coating is beneficial for high density and oxidation protection ability. The SiC/ZrB2–SiC (ZS50-2) coating prepared at 2000 °C showed excellent oxidation protective ability, owing to the residual silicon in the coating and dense coating structure. The weight loss of ZS50-2 after 15 thermal shocks between 1500 °C and room temperature, and oxidation for 19 h at 1500 °C are 6.5% and 2.9%, respectively.  相似文献   

11.
Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0–5 wt%) and ZrB2–SiC composites (10–30 vol% SiC) were investigated experimentally over a wide range of temperature (25–1500 °C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2–SiC composites. At around 200 °C, thermal conductivity of ZrB2–SiC composites was found to be composition independent. Thermal conductivity of ZrB2–SiC composites was also correlated with theoretical predictions of the Maxwell–Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2–SiC composites at room temperature were confirmed by Wiedemann–Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2–SiC composites.  相似文献   

12.
The elevated temperature thermal properties of zirconium diboride ceramics containing boron carbide additions of up to 15 vol% were investigated using a combined experimental and modeling approach. The addition of B4C led to a decrease in the ZrB2 grain size from 22 µm for nominally pure ZrB2 to 5.4 µm for ZrB2 containing 15 vol% B4C. The measured room temperature thermal conductivity decreased from 93 W/m·K for nominally pure ZrB2 to 80 W/m·K for ZrB2 containing 15 vol% B4C. The thermal conductivity also decreased as temperature increased. For nominally pure ZrB2, the thermal conductivity was 67 W/m·K at 2000 °C compared to 55 W/m·K for ZrB2 containing 15 vol% B4C. A model was developed to describe the effects of grain size and the second phase additions on thermal conductivity from room temperature to 2000 °C. Differences between model predictions and measured values were less than 2 W/m·K at 25 °C for nominally pure ZrB2 and less than 6 W/m·K when 15 vol% B4C was added.  相似文献   

13.
Although Cf/ZrB2–SiC composites prepared via direct ink writing combined with low-temperature hot-pressing were shown to exhibit high relative density, high preparation efficiency, and excellent flexural strength and fracture toughness in our previous work, their oxidation and ablation resistance at high and ultrahigh temperatures had not been investigated. In this work, the oxidation and ablation resistance of Cf/ZrB2–SiC composites were evaluated via static oxidation at high temperature (1500°C) and oxyacetylene ablation at ultrahigh temperatures (2080 and 2270°C), respectively. The thickness of the oxide layer of the Cf/ZrB2–SiC composites is <40 μm after oxidizing at 1500°C for 1 h. The Cf/ZrB2–SiC composites exhibit non-ablative properties after oxyacetylene ablation at 2080 and 2270°C for >600 s, with mass ablation rates of 3.77 × 10−3 and 5.53 × 10−3 mg/(cm2 s), and linear ablation rates of −4.5 × 10−4 and −5.8 × 10−4 mm/s, respectively. Upon an increase in the ablation temperature from 2080 to 2270°C, the thickness of the total oxide layer increases from 360 to 570 μm, and the carbon fibers remain intact in the unaffected region. Moreover, the oxidation and ablation process of Cf/ZrB2–SiC at various temperatures was analyzed and discussed.  相似文献   

14.
This paper demonstrates the availability of electro-codeposition (i.e., the simultaneous occurrence of electrophoretic deposition of nanoparticles and electrochemical deposition of metal ions) in molten salts without the assistance of stirring of the bath. In molten NaCl–KCl–AlCl3–MoO3 system containing TiB2 nanoparticles at 710°C, the electro-codeposition of TiB2 nanoparticles and Mo(VI) ions has been achieved, and a (Ti, Mo)B2 coating has been prepared.  相似文献   

15.
The effects of ZrO2 particle size (55 nm and 113 nm) and borothermal reduction routes (borothermal reduction with water-washing (BRW) and in situ 5 mol% TaB2 solid solution, BRS) on synthesis and densification of ZrB2 were investigated. Irrespective of reduction routes, the use of finer ZrO2 powders as raw materials resulted in finer ZrB2 powders. Compared to the powders derived from BRS, the powders derived from BRW had smaller particle size with higher oxygen content, especially the powders synthesized with finer ZrO2. Irrespective of ZrO2 particle size, the oxygen contents of ZrB2 powders prepared by the BRS route were similar. Because of the high oxygen content, the ZrB2 ceramics synthesized by BRW with finer ZrO2 demonstrated the lowest relative density (90.5%), which resulted in the lowest Vickers’ hardness (14.2 ± 0.9 GPa). Due to the low oxygen content and small particle size of ZrB2 powders, fully dense ZrB2 ceramics (relative density: 99.6%) with highest Vickers’ hardness (16.0 ± 0.2 GPa) were achieved by BRS with finer ZrO2 powders.  相似文献   

16.
《Ceramics International》2022,48(6):8155-8168
In the present study, the effect of oxy-acetylene flame angle on the erosion resistance of SiC/ZrB2–SiC/ZrB2 multilayer coatings with the gradient structure was investigated. To this aim, first, the SiC inner layer was applied by the reactive melt infiltration (RMI) technique; then ZrB2 and ZrB2–SiC layers with 10, 20 and 30%wt. SiC were applied on graphite by the plasma spraying technique. To prevent the oxidation of ZrB2 and SiC particles, the plasma spraying process was performed by a solid protective shield. To evaluate the performance of the coatings in erosive environments, the samples were exposed to oxy-acetylene flame at the angles of 30°, 60° and 90° for 360 s; the destruction mechanism of SiC/ZrB2–SiC/ZrB2 multilayer coatings appeared to be controlled mechanically and chemically. The results of the erosion test showed that at the low flame angles of about 30°, due to the shear forces of oxy-acetylene flame, mechanical erosion overcame the chemical one. With increasing the flame angle, due to raising the surface temperature, chemical erosion overcame the mechanical one; so, most chemical destruction occurred at the flame angle of 90°. Also, the results of the erosion test showed that the total chemical and mechanical destruction at the angle of 60° was greater than that in other angles. Also, among the coatings tested, SiC/ZrB2- 20% wt. SiC/ZrB2 coatings had the best erosion resistance; so, the weight changes under the oxy-acetylene flame at the angles of 30° and 60°, respectively, were about ?0.038%. and ?0.355%; meanwhile, at the angle of 90°, it was about +4.3%.  相似文献   

17.
Electrical resistivities, thermal conductivities and thermal expansion coefficients of hot-pressed ZrB2–SiC, ZrB2–SiC–Si3N4, ZrB2–ZrC–SiC–Si3N4 and HfB2–SiC composites have been evaluated. Effects of Si3N4 and ZrC additions on electrical and thermophysical properties of ZrB2–SiC composite have been investigated. Further, properties of ZrB2–SiC and HfB2–SiC composites have been compared. Electrical resistivities (at 25 °C), thermal conductivities (between 25 and 1300 °C) and thermal expansion coefficients (over 25–1000 °C) have been determined by four-probe method, laser flash method and thermo-mechanical analyzer, respectively. Experimental results have shown reasonable agreement with theoretical predictions. Electrical resistivities of ZrB2-based composites are lower than that of HfB2–SiC composite. Thermal conductivity of ZrB2 increases with addition of SiC, while it decreases on ZrC addition, which is explained considering relative contributions of electrons and phonons to thermal transport. As expected, thermal expansion coefficient of each composite is reduced by SiC additions in 25–200 °C range, while it exceeds theoretical values at higher temperatures.  相似文献   

18.
Final-stage sintering was analyzed for nominally phase pure zirconium diboride synthesized by borothermal reduction of high-purity ZrO2. Analysis was conducted on ZrB2 ceramics with relative densities greater than 90% using the Nabarro–Herring stress–directed vacancy diffusion model. Temperatures of 1900°C or above and an applied uniaxial pressure of 50 MPa were required to fully densify ZrB2 ceramics by direct current sintering. Ram travel data were collected and used to determine the relative density of the specimens during sintering. Specimens sintered between 1900 and 2100°C achieved relative densities greater than 97%, whereas specimens sintered below 1900°C failed to reach the final stage of sintering. The average grain size ranged from 1.0 to 14.7 μm. The activation energy was calculated from the slope of an Arrhenius plot that used the Kalish equation. The activation energy was 162 ± 34 kJ/mol, which is consistent with the activation energy for dislocation movement in ZrB2. The diffusion coefficients for dislocation motion that controls densification were 5.1 × 10−6 cm2/s at 1900°C and 5.1 × 10−5 cm2/s at 2100°C, as calculated from activation energy and average grain sizes. This study provides evidence that the dominant mechanism for final-stage sintering of ZrB2 ceramics is dislocation motion.  相似文献   

19.
A carbide boronizing method was first developed to produce dense boron carbide‐ zirconium diboride (“B4C”–ZrB2) composites from zirconium carbide (ZrC) and amorphous boron powders (B) by Spark Plasma Sintering at 1800°C–2000°C. The stoichiometry of “B4C” could be tailored by changing initial boron content, which also has an influence on the processing. The self‐propagating high‐temperature synthesis could be ignited by 1 mol ZrC and 6 mol B at around 1240°C, whereas it was suppressed at a level of 10 mol B. B8C–ZrB2 ceramics sintered at 1800°C with 1 mole ZrC and 10 mole B exhibited super high hardness (40.36 GPa at 2.94 N and 33.4 GPa at 9.8 N). The primary reason for the unusual high hardness of B8C–ZrB2 ceramics was considered to be the formation of nano‐sized ZrB2 grains.  相似文献   

20.
Microstructural evolution of spark plasma sintered ZrB2, ZrB2/20 vol.% SiC (ZS20) and ZrC ultra high temperature ceramics (UHTCs) during laser heating has been investigated. Laser heating at temperatures between 2000 and 3750 °C for up to 300 s, in air or vacuum, resulted in extensive bubble and crater formation on the surfaces of 10 mm diameter samples. However, even after exposure to ultra high temperatures, samples did not disintegrate. X-ray diffraction of exposed faces of ZrB2 and ZS20 samples laser heated in air up to 2700 °C detected only crystalline zirconia. A wide range of morphologies, including nodules, needles, nanofibres and lamella, were observed. The surface of ZrC samples, laser heated in vacuum up to 3750 °C, were characterised by dendritic and eutectic morphologies. Other features associated with melting, such as solidification cracks and trapped porosity, were also observed. A complex array of mechanisms involving solid, liquid and vapour phases led to formation of these various morphologies including melting, oxidation, volatilisation and liquid flow  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号